Muutke küpsiste eelistusi

E-raamat: Seeing Photons: Progress and Limits of Visible and Infrared Sensor Arrays

  • Formaat: 194 pages
  • Ilmumisaeg: 28-Sep-2010
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309153058
  • Formaat - PDF+DRM
  • Hind: 43,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 194 pages
  • Ilmumisaeg: 28-Sep-2010
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309153058

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Department of Defense recently highlighted intelligence, surveillance, and reconnaissance (ISR) capabilities as a top priority for U.S. warfighters. Contributions provided by ISR assets in the operational theaters in Iraq and Afghanistan have been widely documented in press reporting. While the United States continues to increase investments in ISR capabilities, other nations not friendly to the United States will continue to seek countermeasures to U.S. capabilities.





The Technology Warning Division of the Defense Intelligence Agency's (DIA) Defense Warning Office (DWO) has the critical responsibility, in collaborations with other components of the intelligence community (IC), for providing U.S. policymakers insight into technological developments that may impact future U.S. warfighting capabilities.





To this end, the IC requested that the National Research Council (NRC) investigate and report on key visible and infrared detector technologies, with potential military utility, that are likely to be developed in the next 10-15 years. This study is the eighth in a series sponsored by the DWO and executed under the auspices of the NRC TIGER (Technology Insight-Gauge, Evaluate, and Review) Standing Committee.

Table of Contents



Front Matter Summary 1 National Security Context of Detector Technologies 2 Fundamentals of Ultraviolet, Visible, and Infrared Detectors 3 Key Current Technologies and Evolutionary Developments 4 Emerging Technologies with Potentially Significant Impacts 5 The Global Landscape of Detector Technologies Appendixes Appendix A: Biographical Sketches of Committee Members Appendix B: Meetings and Participating Organizations Appendix C: Background Information on Radiation Hardening for Detectors
Summary 1(8)
1 National Security Context Of Detector Technologies 9(14)
Background and Introduction,
9(1)
Committee Approach to Study,
10(1)
General Discussion of Detector Technologies for Future Military Applications,
11(7)
Overview,
11(1)
Wide-area, Continuous, Airborne Surveillance,
11(1)
Inexpensive Airborne Sensors,
12(1)
Airborne Military Targeting,
12(1)
Missile Warning Sensors,
13(1)
See-and-avoid Sensors,
13(1)
Infrared Search and Track Systems,
13(1)
Inexpensive Terrestrial-based Sensors,
14(1)
Ground-based Targeting Sensors,
14(1)
Satellite Platforms,
14(4)
Orbits and Applications,
15(1)
Fractionated Space Systems,
16(1)
Implications for Sensor Systems,
17(1)
Possible Future Detector-related Military Developments,
18(4)
Deductions, Extrapolations, and Speculations,
19(2)
Areas Not Considered or Considered Superficially,
21(1)
Report Organization,
22(1)
2 Fundamentals Of Ultraviolet, Visible, And Infrared Detectors 23(37)
Introduction,
23(1)
Sources,
24(1)
Transmission,
24(2)
Spectral Regions,
24(1)
Atmospheric Transmission,
24(2)
Detection,
26(2)
Thermal Detection,
27(1)
Quantum Detection,
27(1)
Photoconductors,
27(1)
Photovoltaic Detectors,
27(1)
Avalanche Photodiodes,
28(1)
Information Encoded by Photons,
28(2)
Intensity,
28(1)
Spectrum,
28(1)
Polarization,
29(1)
Dynamics,
29(1)
Time Delay,
29(1)
Phase and Incidence Angle,
29(1)
The Limits Imposed by Diffraction,
30(1)
Spatial Resolution,
30(1)
Optical Systems,
31(1)
Numerical Aperture and Field of View,
31(1)
Curved Focal Planes,
32(1)
Detectivity,
32(4)
Quantum Efficiency,
32(1)
Noise,
33(3)
Photon Statistics and Background-limited Infrared Detection,
33(1)
Dark Current,
34(1)
Readout Noise,
35(1)
Other Sources of Noise,
35(1)
Brief Survey of Detectors by Spectral Region,
36(20)
Ultraviolet,
36(1)
Solar Blind,
36(1)
Visible,
37(8)
Charge-coupled Device Imagers,
39(3)
Complementary Metal Oxide–Semiconductor Imagers,
42(3)
Avalanche Photodiodes,
45(4)
Near Infrared,
49(1)
Silicon,
49(1)
Intensifiers,
49(1)
Short-wavelength Infrared,
50(1)
Mid-, Long-, and Very Long Wavelength Infrared,
50(6)
Brief History of Infrared Detection,
50(1)
Indium Antimonide,
51(1)
Mercury Cadmium Telluride,
51(3)
Strained-layer Superlattice,
54(1)
Quantum-well Infrared Photodetectors and Quantum-dot Infrared Photodetectors,
55(1)
Very Long Wavelength Infrared,
56(1)
Fabrication of Detectors and Focal Plane Arrays,
56(2)
Detectors,
56(1)
Focal Plane Arrays,
57(1)
Manufacturing Infrastructure,
58(1)
Concluding Thoughts,
58(2)
3 Key Current Technologies And Evolutionary Developments 60(31)
Introduction,
60(1)
Key Technologies Expected to Drive Advancements in Existing Detector Technologies over the Next 10-15 Years,
61(29)
Ultralarge-format Focal Plane Arrays,
62(1)
Mosaic Tiling Technologies,
63(2)
Pixel Size Reduction,
65(2)
Smarter Pixels and On-focal-plane Processing,
67(4)
3-D Integration and Improved Hybridization Technology,
71(1)
Devices Able to Perform at Higher Temperatures,
71(2)
Multicolor Pixels,
73(3)
Improved SWIR Arrays,
76(1)
Photon Counting Technologies and Lower Readout Noise,
77(2)
Curved Focal Surfaces,
79(1)
Lower Power,
79(1)
Radiation Hardening,
79(1)
Cost Reduction,
80(1)
Improved Cooler Technologies,
81(4)
Cryocoolers,
82(3)
Thermoelectric Coolers,
85(5)
Concluding Thoughts,
90(1)
4 Emerging Technologies With Potentially Significant Impacts 91(43)
Introduction,
91(1)
Advanced Detection Technologies,
91(17)
Epitaxial Growth Approaches,
91(2)
Nanophotonics,
93(8)
Photonic Structures,
96(1)
Electronics,
97(1)
Sensor Elements,
98(1)
Plasmonic Enhancement of Detectors,
98(3)
Antennas,
101(3)
Wavelength Up-conversion,
104(1)
MEMS Bi-morph Cantilevers,
105(1)
Optomechanical Devices,
106(1)
Bioinspired Detection,
107(1)
Emerging Innovative Optical Technologies,
108(7)
Microlenses,
108(1)
Integration of Optics with Focal Plane Arrays,
109(2)
Compressive Sensing,
111(3)
Lensless Imaging,
114(1)
Improved Coolers,
115(6)
Thermoelectrics,
115(4)
Phononic Crystals for Cooling,
119(1)
Laser Cooling,
119(2)
Enhanced Signal Processing,
121(11)
Data and Information Transmission,
122(2)
Data Compression,
122(2)
Data Screening Techniques,
124(1)
Application-specific Processing,
124(1)
Local Processing,
124(6)
Multisensor Data Fusion,
130(2)
Concluding Thoughts,
132(2)
5 The Global Landscape Of Detector Technologies 134(21)
Introduction,
134(1)
Worldwide Leaders,
134(4)
Government Roles, Markets, and Scale,
138(5)
U.S. Export Restrictions,
143(3)
Supply Chain Bottlenecks,
146(1)
Additional Considerations,
147(1)
Concluding Thoughts,
148(7)
Tracking Developments,
151
Appendixes
A Biographical Sketches of Committee Members
155(8)
B Meetings and Participating Organizations
163(4)
C Background Information on Radiation Hardening for Detectors
167