Muutke küpsiste eelistusi

E-raamat: Smart Grid: Fundamentals of Design and Analysis

  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Mar-2012
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118156087
  • Formaat - PDF+DRM
  • Hind: 107,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Mar-2012
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118156087

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book is written as primer hand book for addressing the fundamentals of smart grid. It provides the working definition the functions, the design criteria and the tools and techniques and technology needed for building smart grid. The book is needed to provide a working guideline in the design, analysis and development of Smart Grid. It incorporates all the essential factors of Smart Grid appropriate for enabling the performance and capability of the power system. There are no comparable books which provide information on the “how to” of the design and analysis.

The book provides a fundamental discussion on the motivation for the smart grid development, the working definition and the tools for analysis and development of the Smart Grid.  Standards and requirements needed for designing new devices, systems and products are discussed; the automation and computational techniques need to ensure that the Smart Grid guarantees adaptability, foresight alongside capability of handling new systems and components are discussed. The interoperability of different renewable energy sources are included to ensure that there will be minimum changes in the existing legacy system.

Overall the book evaluates different options of computational intelligence, communication technology and decision support system to design various aspects of Smart Grid. Strategies for demonstration of Smart Grid schemes on selected problems are presented.

Preface xiii
1 Smart Grid Architectural Designs
1(15)
1.1 Introduction
1(1)
1.2 Today's Grid versus the Smart Grid
2(1)
1.3 Energy Independence and Security Act of 2007: Rationale for the Smart Grid
2(2)
1.4 Computational Intelligence
4(1)
1.5 Power System Enhancement
5(1)
1.6 Communication and Standards
5(1)
1.7 Environment and Economics
5(1)
1.8 Outline of the Book
5(1)
1.9 General View of the Smart Grid Market Drivers
6(1)
1.10 Stakeholder Roles and Function
6(5)
1.10.1 Utilities
9(1)
1.10.2 Government Laboratory Demonstration Activities
9(1)
1.10.3 Power Systems Engineering Research Center (PSERC)
10(1)
1.10.4 Research Institutes
10(1)
1.10.5 Technology Companies, Vendors, and Manufacturers
10(1)
1.11 Working Definition of the Smart Grid Based on Performance Measures
11(1)
1.12 Representative Architecture
12(1)
1.13 Functions of Smart Grid Components
12(3)
1.13.1 Smart Devices Interface Component
13(1)
1.13.2 Storage Component
13(1)
1.13.3 Transmission Subsystem Component
14(1)
1.13.4 Monitoring and Control Technology Component
14(1)
1.13.5 Intelligent Grid Distribution Subsystem Component
14(1)
1.13.6 Demand Side Management Component
14(1)
1.14 Summary
15(1)
References
15(1)
Suggested Readings
15(1)
2 Smart Grid Communications and Measurement Technology
16(13)
2.1 Communication and Measurement
16(3)
2.2 Monitoring, PMU, Smart Meters, and Measurements Technologies
19(4)
2.2.1 Wide Area Monitoring Systems (WAMS)
20(1)
2.2.2 Phasor Measurement Units (PMU)
20(1)
2.2.3 Smart Meters
21(1)
2.2.4 Smart Appliances
22(1)
2.2.5 Advanced Metering Infrastructure (AMI)
22(1)
2.3 GIS and Google Mapping Tools
23(1)
2.4 Multiagent Systems (MAS) Technology
24(3)
2.4.1 Multiagent Systems for Smart Grid Implementation
25(1)
2.4.2 Multiagent Specifications
25(1)
2.4.3 Multiagent Technique
26(1)
2.5 Microgrid and Smart Grid Comparison
27(1)
2.6 Summary
27(2)
References
27(2)
3 Performance Analysis Tools for Smart Grid Design
29(22)
3.1 Introduction to Load Flow Studies
29(1)
3.2 Challenges to Load Flow in Smart Grid and Weaknesses of the Present Load Flow Methods
30(1)
3.3 Load Flow State of the Art: Classical, Extended Formulations, and Algorithms
31(6)
3.3.1 Gauss-Seidal Method
31(1)
3.3.2 Newton-Raphson Method
32(1)
3.3.3 Fast Decouple Method
33(1)
3.3.4 Distribution Load Flow Methods
33(4)
3.4 Congestion Management Effect
37(1)
3.5 Load Flow for Smart Grid Design
38(3)
3.5.1 Cases for the Development of Stochastic Dynamic Optimal Power Flow (DSOPF)
41(1)
3.6 DSOPF Application to the Smart Grid
41(2)
3.7 Static Security Assessment (SSA) and Contingencies
43(1)
3.8 Contingencies and Their Classification
44(4)
3.8.1 Steady-State Contingency Analysis
46(1)
3.8.2 Performance Indices
47(1)
3.8.3 Sensitivity-Based Approaches
48(1)
3.9 Contingency Studies for the Smart Grid
48(1)
3.10 Summary
49(2)
References
50(1)
Suggested Readings
50(1)
4 Stability Analysis Tools for Smart Grid
51(49)
4.1 Introduction to Stability
51(1)
4.2 Strengths and Weaknesses of Existing Voltage Stability Analysis Tools
51(5)
4.3 Voltage Stability Assessment
56(6)
4.3.1 Voltage Stability and Voltage Collapse
57(1)
4.3.2 Classification of Voltage Stability
58(1)
4.3.3 Static Stability (Type I Instability)
59(1)
4.3.4 Dynamic Stability (Type II Instability)
59(1)
4.3.5 Analysis Techniques for Dynamic Voltage Stability Studies
60(2)
4.4 Voltage Stability Assessment Techniques
62(3)
4.5 Voltage Stability Indexing
65(3)
4.6 Analysis Techniques for Steady-State Voltage Stability Studies
68(2)
4.6.1 Direct Methods for Detecting Voltage Collapse Points
69(1)
4.6.2 Indirect Methods (Continuation Methods)
69(1)
4.7 Application and Implementation Plan of Voltage Stability
70(1)
4.8 Optimizing Stability Constraint through Preventive Control of Voltage Stability
71(2)
4.9 Angle Stability Assessment
73(8)
4.9.1 Transient Stability
75(1)
4.9.2 Stability Application to a Practical Power System
76(1)
4.9.3 Boundary of the Region of Stability
77(3)
4.9.4 Algorithm to Find the Controlling UEP
80(1)
4.9.5 Process Changes in Design of DSA for the Smart Grid
80(1)
4.10 State Estimation
81(19)
4.10.1 Mathematical Formulations for Weighted Least Square Estimation
84(2)
4.10.2 Detection and Identification of Bad Data
86(1)
4.10.3 Pre-Estimation Analysis
86(2)
4.10.4 Postestimation Analysis
88(2)
4.10.5 Robust State Estimation
90(4)
4.10.6 SE for the Smart Grid Environment
94(1)
4.10.7 Real-Time Network Modeling
95(1)
4.10.8 Approach of the Smart Grid to State Estimation
95(2)
4.10.9 Dynamic State Estimation
97(1)
4.10.10 Summary
98(1)
References
98(1)
Suggested Readings
98(2)
5 Computational Tools for Smart Grid Design
100(22)
5.1 Introduction to Computational Tools
100(1)
5.2 Decision Support Tools (DS)
101(2)
5.2.1 Analytical Hierarchical Programming (AHP)
102(1)
5.3 Optimization Techniques
103(1)
5.4 Classical Optimization Method
103(5)
5.4.1 Linear Programming
103(2)
5.4.2 Nonlinear Programming
105(1)
5.4.3 Integer Programming
106(1)
5.4.4 Dynamic Programming
107(1)
5.4.5 Stochastic Programming and Chance Constrained Programming (CCP)
107(1)
5.5 Heuristic Optimization
108(4)
5.5.1 Artificial Neural Networks (ANN)
109(2)
5.5.2 Expert Systems (ES)
111(1)
5.6 Evolutionary Computational Techniques
112(3)
5.6.1 Genetic Algorithm (GA)
112(1)
5.6.2 Particle Swarm Optimization (PSO)
113(1)
5.6.3 Ant Colony Optimization
113(2)
5.7 Adaptive Dynamic Programming Techniques
115(2)
5.8 Pareto Methods
117(1)
5.9 Hybridizing Optimization Techniques and Applications to the Smart Grid
118(1)
5.10 Computational Challenges
118(1)
5.11 Summary
119(3)
References
120(2)
6 Pathway for Designing Smart Grid
122(18)
6.1 Introduction to Smart Grid Pathway Design
122(1)
6.2 Barriers and Solutions to Smart Grid Development
122(3)
6.3 Solution Pathways for Designing Smart Grid Using Advanced Optimization and Control Techniques for Selection Functions
125(1)
6.4 General Level Automation
125(5)
6.4.1 Reliability
125(2)
6.4.2 Stability
127(1)
6.4.3 Economic Dispatch
127(1)
6.4.4 Unit Commitment
128(2)
6.4.5 Security Analysis
130(1)
6.5 Bulk Power Systems Automation of the Smart Grid at Transmission Level
130(2)
6.5.1 Fault and Stability Diagnosis
131(1)
6.5.2 Reactive Power Control
132(1)
6.6 Distribution System Automation Requirement of the Power Grid
132(5)
6.6.1 Voltage/VAr Control
132(3)
6.6.2 Power Quality
135(1)
6.6.3 Network Reconfiguration
136(1)
6.6.4 Demand-Side Management
136(1)
6.6.5 Distribution Generation Control
137(1)
6.7 End User/Appliance Level of the Smart Grid
137(1)
6.8 Applications for Adaptive Control and Optimization
137(1)
6.9 Summary
138(2)
References
138(1)
Suggested Reading
139(1)
7 Renewable Energy and Storage
140(20)
7.1 Renewable Energy Resources
140(1)
7.2 Sustainable Energy Options for the Smart Grid
141(7)
7.2.1 Solar Energy
141(1)
7.2.2 Solar Power Technology
142(1)
7.2.3 Modeling PV Systems
142(2)
7.2.4 Wind Turbine Systems
144(1)
7.2.5 Biomass-Bioenergy
145(2)
7.2.6 Small and Micro Hydropower
147(1)
7.2.7 Fuel Cell
147(1)
7.2.8 Geothermal Heat Pumps
148(1)
7.3 Penetration and Variability Issues Associated with Sustainable Energy Technology
148(2)
7.4 Demand Response Issues
150(1)
7.5 Electric Vehicles and Plug-in Hybrids
151(1)
7.6 PHEV Technology
151(1)
7.6.1 Impact of PHEV on the Grid
151(1)
7.7 Environmental Implications
152(2)
7.7.1 Climate Change
153(1)
7.7.2 Implications of Climate Change
153(1)
7.8 Storage Technologies
154(4)
7.9 Tax Credits
158(1)
7.10 Summary
159(1)
References
159(1)
Suggested Reading
159(1)
8 Interoperability, Standards, and Cyber Security
160(16)
8.1 Introduction
160(1)
8.2 Interoperability
161(2)
8.2.1 State-of-the-Art-Interoperability
161(1)
8.2.2 Benefits and Challenges of Interoperability
161(1)
8.2.3 Model for Interoperability in the Smart Grid Environment
162(1)
8.2.4 Smart Grid Network Interoperability
162(1)
8.2.5 Interoperability and Control of the Power Grid
163(1)
8.3 Standards
163(3)
8.3.1 Approach to Smart Grid Interoperability Standards
163(3)
8.4 Smart Grid Cyber Security
166(7)
8.4.1 Cyber Security State of the Art
166(3)
8.4.2 Cyber Security Risks
169(2)
8.4.3 Cyber Security Concerns Associated with AMI
171(1)
8.4.4 Mitigation Approach to Cyber Security Risks
171(2)
8.5 Cyber Security and Possible Operation for Improving Methodology for Other Users
173(1)
8.6 Summary
174(2)
References
174(1)
Suggested Readings
174(2)
9 Research, Education, and Training for the Smart Grid
176(8)
9.1 Introduction
176(1)
9.2 Research Areas for Smart Grid Development
176(2)
9.3 Research Activities in the Smart Grid
178(1)
9.4 Multidisciplinary Research Activities
178(1)
9.5 Smart Grid Education
179(3)
9.5.1 Module 1: Introduction
180(1)
9.5.2 Module 2: Architecture
180(1)
9.5.3 Module 3: Functions
181(1)
9.5.4 Module 4: Tools and Techniques
181(1)
9.5.5 Module 5: Pathways to Design
181(1)
9.5.6 Module 6: Renewable Energy Technologies
181(1)
9.5.7 Module 7: Communication Technologies
182(1)
9.5.8 Module 8: Standards, Interoperability, and Cyber Security
182(1)
9.5.9 Module 9: Case Studies and Testbeds
182(1)
9.6 Training and Professional Development
182(1)
9.7 Summary
183(1)
References
183(1)
10 Case Studies and Testbeds for the Smart Grid
184(16)
10.1 Introduction
184(1)
10.2 Demonstration Projects
184(1)
10.3 Advanced Metering
185(1)
10.4 Microgrid with Renewable Energy
185(1)
10.5 Power System Unit Commitment (UC) Problem
186(5)
10.6 ADP for Optimal Network Reconfiguration in Distribution Automation
191(5)
10.7 Case Study of RER Integration
196(1)
10.7.1 Description of Smart Grid Activity
196(1)
10.7.2 Approach for Smart Grid Application
196(1)
10.8 Testbeds and Benchmark Systems
197(1)
10.9 Challenges of Smart Transmission
198(1)
10.10 Benefits of Smart Transmission
198(1)
10.11 Summary
198(2)
References
199(1)
11 Epilogue
200(3)
Index 203
JAMES MOMOH, PhD, is Professor in the Department of Electrical and Computer Engineering and Director of the Center for Energy Systems and Control at Howard University. Dr. Momoh also serves as Principal Consultant at Bonneville Power Administration. He has authored or coauthored several books, including Operation and Control of Electric Energy Processing Systems and Economic Market Design and Planning for Electric Power Systems, both from Wiley-IEEE Press. Dr. Momoh is dedicated to the development of interdisciplinary research and education programs in systems engineering, energy systems, and power economics.