|
|
xi | |
|
|
xv | |
Preface |
|
xix | |
|
|
1 | (42) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
3 | (6) |
|
|
9 | (6) |
|
The cumulative distribution function |
|
|
9 | (2) |
|
The probability density function |
|
|
11 | (1) |
|
|
12 | (2) |
|
The quantile density function |
|
|
14 | (1) |
|
A modelling kit for distributions |
|
|
15 | (2) |
|
Modelling with quantile functions |
|
|
17 | (7) |
|
Simple properties of population quantile functions |
|
|
24 | (4) |
|
Elementary model components |
|
|
28 | (3) |
|
|
31 | (3) |
|
|
34 | (5) |
|
|
39 | (1) |
|
|
39 | (2) |
|
|
41 | (2) |
|
|
43 | (18) |
|
|
43 | (1) |
|
|
44 | (6) |
|
The five-number summary and measures of spread |
|
|
50 | (3) |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
57 | (2) |
|
|
59 | (2) |
|
|
61 | (22) |
|
|
61 | (1) |
|
Rules for distributional model building |
|
|
62 | (5) |
|
|
62 | (1) |
|
|
63 | (1) |
|
The multiplication rule for positive variables |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
The Q-transformation rule |
|
|
65 | (1) |
|
The uniform transformation rule |
|
|
66 | (1) |
|
The p-transformation rule |
|
|
66 | (1) |
|
|
67 | (1) |
|
The addition rule for quantile density functions |
|
|
67 | (1) |
|
|
68 | (3) |
|
Quantile measures of distributional form |
|
|
71 | (3) |
|
|
74 | (5) |
|
|
74 | (3) |
|
Probability-weighted moments |
|
|
77 | (2) |
|
|
79 | (4) |
|
|
83 | (34) |
|
The process of statistical modelling |
|
|
83 | (1) |
|
|
84 | (6) |
|
The order statistics distribution rule |
|
|
86 | (3) |
|
|
89 | (1) |
|
|
90 | (4) |
|
The median transformation rule |
|
|
94 | (1) |
|
|
94 | (3) |
|
|
97 | (3) |
|
|
100 | (2) |
|
|
102 | (4) |
|
|
103 | (1) |
|
|
103 | (2) |
|
|
105 | (1) |
|
Quantile models and generating models |
|
|
106 | (2) |
|
|
108 | (3) |
|
Evaluating linear moments |
|
|
111 | (2) |
|
|
113 | (4) |
|
|
117 | (14) |
|
|
117 | (1) |
|
|
117 | (1) |
|
The reciprocal uniform distribution |
|
|
118 | (1) |
|
The exponential distribution |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
122 | (1) |
|
The extreme, type 1, distribution and the Cauchy distribution |
|
|
122 | (2) |
|
|
124 | (1) |
|
The normal and log-normal distributions |
|
|
125 | (3) |
|
|
128 | (3) |
|
Distributional Model Building |
|
|
131 | (24) |
|
|
131 | (1) |
|
Position and scale change --- generalizing |
|
|
131 | (2) |
|
Using addition --- linear and semi-linear models |
|
|
133 | (7) |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (2) |
|
Distributions of largest and smallest observations |
|
|
145 | (2) |
|
Conditionally modified models |
|
|
147 | (3) |
|
Conditional probabilities |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (2) |
|
|
150 | (1) |
|
Conceptual model building |
|
|
150 | (2) |
|
|
152 | (3) |
|
|
155 | (18) |
|
|
155 | (1) |
|
The logistic distributions |
|
|
155 | (1) |
|
|
156 | (8) |
|
The three-parameter, symmetric, Tukey-lambda distribution |
|
|
157 | (1) |
|
The four-parameter lambda |
|
|
158 | (2) |
|
|
160 | (3) |
|
The five-parameter lambda |
|
|
163 | (1) |
|
Extreme value distributions |
|
|
164 | (3) |
|
The Burr family of distributions |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
169 | (3) |
|
|
169 | (1) |
|
The geometric distribution |
|
|
170 | (1) |
|
The binomial distribution |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (20) |
|
|
173 | (1) |
|
|
173 | (4) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
177 | (7) |
|
|
177 | (1) |
|
|
178 | (6) |
|
Identification involving component models |
|
|
184 | (2) |
|
Sequential model building |
|
|
186 | (4) |
|
|
190 | (3) |
|
|
193 | (30) |
|
|
193 | (1) |
|
|
193 | (5) |
|
Methods based on lack of fit criteria |
|
|
198 | (9) |
|
The method of maximum likelihood |
|
|
207 | (3) |
|
|
210 | (3) |
|
|
213 | (4) |
|
|
217 | (1) |
|
|
218 | (5) |
|
|
223 | (14) |
|
|
223 | (1) |
|
|
224 | (4) |
|
|
224 | (1) |
|
Density probability plots |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
227 | (1) |
|
Unit exponential spacing control chart |
|
|
227 | (1) |
|
|
228 | (2) |
|
Numerical supplements to visual validation |
|
|
230 | (1) |
|
|
230 | (5) |
|
|
231 | (1) |
|
Testing using the uniform distribution |
|
|
231 | (1) |
|
Tests based on confidence intervals |
|
|
232 | (1) |
|
Tests based on the criteria of fit |
|
|
232 | (3) |
|
|
235 | (2) |
|
|
237 | (14) |
|
|
237 | (1) |
|
|
237 | (4) |
|
|
237 | (1) |
|
|
238 | (3) |
|
|
241 | (2) |
|
Statistical process control |
|
|
243 | (4) |
|
|
243 | (1) |
|
|
243 | (2) |
|
|
245 | (2) |
|
|
247 | (4) |
|
Regression Quantile Models |
|
|
251 | (18) |
|
Approaches to regression modelling |
|
|
251 | (9) |
|
Quantile autoregression models |
|
|
260 | (1) |
|
Semi-linear and non-linear regression quantile functions |
|
|
261 | (5) |
|
|
266 | (3) |
|
Bivariate Quantile Distributions |
|
|
269 | (18) |
|
|
269 | (2) |
|
|
271 | (8) |
|
The circular distributions |
|
|
271 | (3) |
|
The Weibull circular distribution |
|
|
274 | (1) |
|
The generalized Pareto circular distribution |
|
|
275 | (2) |
|
The elliptical family of distributions |
|
|
277 | (2) |
|
|
279 | (1) |
|
Marginal/conditional models |
|
|
280 | (1) |
|
|
281 | (4) |
|
|
285 | (2) |
|
|
287 | (6) |
Appendix 1 Some Useful Mathematical Results |
|
293 | (2) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
Appendix 2 Further Studies in the Method of Maximum Likelihood |
|
295 | (4) |
Appendix 3 Bivariate Transformations |
|
299 | (2) |
References |
|
301 | (8) |
Index |
|
309 | |