Muutke küpsiste eelistusi

E-raamat: Structure and Properties of Fat Crystal Networks

(University of Guelph, Ontario, Canada),
  • Formaat: 518 pages
  • Ilmumisaeg: 25-Sep-2012
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040062999
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 63,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 518 pages
  • Ilmumisaeg: 25-Sep-2012
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040062999
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The plasticity of fats is due to crystallized material that forms a crystal network that entraps liquid oil, and many of the sensory attributes of fat and fat-structured food products--for example spreadability, mouth-feel, texture, and flavor--are strongly influenced by the physical characteristics of this fat crystal network. Marangoni (U. of Guelph, Canada) and Wesdorp, with a large Dutch chemical company, synthesize the research on the networks, updating from the first edition (no date noted) to incorporate new findings on intermolecular interactions and other matters. The topics include crystallography and polymorphism, the rheology of fats, viscoelastic properties of fats, yield stress and the elastic modulus of a fat crystal network, and liquid-multiple solid phase equilibria in fats. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

Lipid science and technology has grown exponentially since the turn of the millennium. The replacement of unhealthy fats in the foods we eat, and of petroleum-based ingredients in the cosmetics we use, is a top priority for consumers, government, and industry alike. Particularly for the food industry, removing trans fats and reducing saturated fat in foods has produced a major challenge: How do we create structure with a minimum amount of structuring material?

A comprehensive omnibus, Structure and Properties of Fat Crystal Networks, Second Edition clarifies the complex relationship between triglyceride composition of vegetable oils and fats, the physicochemical properties of triglycerides in simple and complex model systems, their crystallization, and melting behavior. Furthermore, it dives into the implications of these materials on the functional properties in food systems.

Replacing ingredients, optimizing functionality, and improving health necessitate the ability to relate the structural organization present in a material to macroscopic properties. Revisiting concepts and approaches used in the study of fat crystal networks, the second edition includes new developments, particularly intermolecular interactions, and thoroughly updated analytical methods. Succinct, clear, and complete, this book is designed to help students and early-career researchers make the study of fats a more focused, less frustrating, and less expensive endeavor.

Introduction xv
Chapter 1 Crystallography and Polymorphism
1(26)
1.1 Crystal Lattices
1(1)
1.2 Lattices and Unit Cells
1(3)
1.3 Miller Indices
4(1)
1.4 Powder X-Ray Diffraction and Bragg's Law
5(2)
1.5 Typical Powder XRD Setup
7(2)
1.6 Indexing Reflections
9(1)
1.7 Crystallographic Structure of Fats
10(14)
1.7.1 Single Crystal Structures
10(3)
1.7.2 Polymorphism
13(6)
1.7.2.1 Energetics of Crystallization as It Relates to Polymorphism
19(1)
1.7.2.2 Subcells and Subcell Packing
20(4)
References
24(3)
Chapter 2 Nucleation and Crystalline Growth Kinetics
27(74)
2.1 Introduction to Crystallization
27(8)
2.1.1 Nucleation Overview
27(2)
2.1.2 Quantification of the Driving Force for Crystallization
29(2)
2.1.3 Better Understanding the Chemical Potential
31(4)
2.2 Crystallization Kinetics
35(22)
2.2.1 Nucleation
35(1)
2.2.1.1 Isothermal Steady-State Nucleation Theory
35(3)
2.2.1.2 Theory of Reaction Rates
38(2)
2.2.1.3 Determination of the Free Energy of Nucleation for an Isothermal Process
40(2)
2.2.1.4 Estimates of ΔHr and Vsm
42(1)
2.2.1.5 Metastability and Free Energy of Nucleation
43(1)
2.2.2 Isothermal Crystal Growth---The Avrami Model
43(2)
2.2.2.1 Derivation of the Model
45(9)
2.2.2.2 Use of the Model
54(3)
2.3 Isothermal Crystallization Kinetics and Microstructure
57(22)
2.3.1 Relationship between Isothermal Nucleation Kinetics and the Fractal Dimension of a Fractal Cluster
57(4)
2.3.2 Relationship between Fractal Cluster Size and the Isothermal Free Energy of Nucleation
61(4)
2.3.3 Fractal Growth of Milk Fat Crystals Is Unaffected by Microstructural Confinement
65(5)
2.3.4 Comparison of Experimental Techniques Used in Lipid Crystallization Studies
70(9)
2.4 Nonisothermal Nucleation of Fats
79(17)
2.4.1 Isothermal, Near-Isothermal, and Nonisothermal Processes
79(1)
2.4.2 Formulation of the Time-Dependent Supercooling Parameter
80(2)
2.4.3 Probabilistic Approach to Modeling Nonisothermal Nucleation Kinetics
82(1)
2.4.4 Clustering Energy for Nonisothermal Nucleation
83(1)
2.4.5 Special Case When β Is Very Small
84(1)
2.4.6 Nonisothermal Nucleation of Five Commercial Fats---A Practical Example of This Approach
85(1)
2.4.6.1 Materials and Methods Used
85(2)
2.4.6.2 Results
87(9)
References
96(5)
Chapter 3 Intermolecular Forces in Triacylglycerol Particles and Oils
101(24)
David A. Pink
3.1 Introduction
101(1)
3.2 Van der Waals Interactions
102(2)
3.3 Mean Field Models
104(13)
3.3.1 Lifshitz Theory and the Coupled Dipole Method
104(4)
3.3.2 The Lennard Jones 6-12 Potential
108(2)
3.3.3 Fractal Model and Semi-Classical Model
110(2)
3.3.4 Coarse-Grained Approaches---1
112(1)
3.3.4.1 Example: Aggregation of Triacylglycerol CNPs
112(2)
3.3.4.2 Application: Oils in Confined Nanospaces
114(2)
3.3.5 Coarse-Grained Approaches---2
116(1)
3.4 Van der Waals Interactions and Rheological Characteristics
117(1)
3.5 X-Ray Scattering and Fractal Dimensions
118(1)
3.6 Conclusion
119(1)
Acknowledgments
119(1)
References
119(6)
Chapter 4 Rheology of Fats
125(22)
Alejandro G. Marangoni
Suresh S. Narine
4.1 Hooke's Law
125(1)
4.2 Stress-Strain Relationships and Elastic
125(2)
4.2.1 Shear and Bulk Moduli
125(2)
4.3 Types of Stresses and Corresponding
127(2)
4.3.1 Definitions of Moduli
127(2)
4.4 Elastic Behavior
129(10)
4.4.1 Structural Theory of Elasticity
129(10)
4.5 Yield Value from Constant Force Cone
139(2)
4.5.1 Penetrometry Measurements
139(2)
4.6 Rheology of Liquids
141(1)
4.6.1 Viscosity
141(1)
4.7 Types of Fluid Flow
142(2)
4.7.1 Ideal, Newtonian Behavior
142(1)
4.7.2 Nonideal, Non-Newtonian Behavior
142(1)
4.7.2.1 Time-Independent Fluids
143(1)
4.7.2.2 Time-Dependent Fluids
144(1)
4.8 Modeling Flow Behavior
144(1)
References
145(2)
Chapter 5 Viscoelastic Properties of Fats
147(12)
5.1 Creep and Recovery/Stress Relaxation
148(10)
5.1.1 Kelvin-Voigt Solid
149(1)
5.1.2 Maxwell Fluid
150(2)
5.1.3 Burger Model
152(2)
5.1.4 Real Viscoelastic Materials
154(1)
5.1.5 Creep-Recovery Studies of Fats
155(3)
References
158(1)
Chapter 6 Dynamic Rheological Studies of Fats
159(14)
6.1 Introduction
159(14)
6.1.1 Theoretical Considerations
160(1)
6.1.1.1 Hookean Solids (Springs)
161(1)
6.1.1.2 Newtonian Fluids (Dashpots)
162(1)
6.1.1.3 Kelvin-Voigt Viscoelastic Solid
163(1)
6.1.1.4 Maxwell Viscoelastic Fluid
164(2)
6.1.1.5 Real Viscoelastic Materials---Generalization of the Model
166(1)
6.1.2 Complex Modulus
167(1)
6.1.3 Complex Viscosity
168(1)
6.1.4 Some Basic Considerations for Rheological Studies of Fats under Dynamic Conditions
169(4)
Chapter 7 Nanostructure and Microstructure of Fats
173(60)
Alejandro G. Marangoni
Suresh S. Narine
Nuria C. Acevedo
Dongming Tang
7.1 Introduction
173(1)
7.2 Mesoscale and Nanoscale in Fat Crystal Networks
174(29)
7.2.1 Fractals
180(6)
7.2.2 Scaling Theory as Applied to Colloidal Gels
186(3)
7.2.3 Elastic Properties of Colloidal Gels: Exploiting the Fractal Nature of the Aggregates
189(8)
7.2.4 Application of Scaling Theory Developed for Colloidal Gels to Fat Crystal Networks
197(4)
7.2.5 Network Models
201(2)
7.3 Where Lies the Fractality in Fat Crystal Networks?
203(23)
7.3.1 Structural Model of the Fat Crystal Network
204(1)
7.3.2 Characterizing Microstructure
205(4)
7.3.3 Fractality
209(2)
7.3.4 Weak Link Revisited
211(2)
7.3.5 Relating the Particle Volume Fraction to the Solid Fat Content
213(1)
7.3.6 Rheology
214(1)
7.3.7 Physical Significance of Fractal Dimension
215(6)
7.3.8 Other Methods for the Determination of the Fractal Dimension
221(1)
7.3.8.1 Fractal Dimension from Oil Permeability Measurements
221(2)
7.3.8.2 Fractal Dimensions by Light Scattering
223(1)
7.3.8.3 Thermomechanical Method for Determining Fractal Dimensions
224(1)
7.3.8.4 Fractal Dimension from the Stress at the Limit of Linearity: Fats Are in the Weak-Link Rheological Regime
225(1)
7.3.9 Modified Fractal Model
225(1)
7.4 Conclusions
226(1)
References
227(6)
Chapter 8 Yield Stress and Elastic Modulus of a Fat Crystal Network
233(8)
8.1 Model
233(7)
References
240(1)
Chapter 9 Liquid-Multiple Solid Phase Equilibria in Fats
241(178)
Leendert H. Wesdorp
J.A. van Meeteren
S. de Jong
R. van der Giessen
P. Overbosch
P.A.M. Grootscholten
M. Struik
E. Royers
A. Don
Th. de Loos
C. Peters
I. Gandasasmita
9.1 Introduction and Problem Definition
241(10)
9.1.1 Solid-Liquid Phase Equilibria and Fats
241(2)
9.1.2 Triacylglycerols: Nomenclature
243(1)
9.1.3 Triacylglycerols: Polymorphism
244(1)
9.1.3.1 Basic Polymorphic Forms of TAGs
244(2)
9.1.3.2 Submodifications
246(2)
9.1.3.3 Stability
248(1)
9.1.4 Methods for Predicting Solid Phase Composition and Quantity
248(1)
9.1.4.1 Linear Programming/Multiple Regression
249(1)
9.1.4.2 Excess Contribution Method
249(1)
9.1.4.3 TAGs Inductors de Crystallization Method
250(1)
9.1.4.4 Classification of TAGs Method
250(1)
9.1.4.5 Other TAG-Based Methods
251(1)
9.1.5 Conclusion
251(1)
9.2 Approach to the Problem
251(5)
9.2.1 Solid-Liquid Equilibrium Thermodynamics
251(2)
9.2.2 Kinetics of Crystallization
253(1)
9.2.2.1 Polymorphism and Kinetics of Crystallization
253(1)
9.2.2.2 Shell Formation
254(1)
9.2.2.3 Poor Crystallinity
254(1)
9.2.3 Conclusion and Approach to the Problem
255(1)
9.3 Flash Calculations
256(16)
9.3.1 Introduction
256(1)
9.3.2 Initial Estimates and Stability Tests
257(1)
9.3.2.1 Splitting Component Method
258(1)
9.3.2.2 Michelsen's Tangent Plane Criterion Method
259(3)
9.3.3 Iterating Procedures
262(1)
9.3.3.1 Direct Substitution
262(1)
9.3.3.2 Gibbs Free Energy Minimization
263(4)
9.3.3.3 Removal of Phases
267(1)
9.3.4 Comparing Methods
268(1)
9.3.4.1 Criteria
268(1)
9.3.4.2 Test Results
269(1)
9.3.5 Calculation of Differential Scanning Calorimetry Curves
270(1)
9.3.6 Conclusion
271(1)
9.4 Pure Component Properties
272(15)
9.4.1 Literature Data and Correlations
272(1)
9.4.1.1 Correlating Enthalpy of Fusion and Melting Points of Lipids
272(2)
9.4.1.2 Data and Correlations for TAGs
274(2)
9.4.2 Experimental Work
276(1)
9.4.3 Development of the Correlation
277(1)
9.4.3.1 Saturated TAGs
277(6)
9.4.3.2 Unsaturated TAGs
283(3)
9.4.4 Conclusion
286(1)
9.5 Mixing Behavior in Liquid State
287(11)
9.5.1 Literature
287(1)
9.5.2 Model Calculations
288(1)
9.5.3 Experiments
289(1)
9.5.3.1 Method for Determination of Activity Coefficients of Mixtures of Nonvolatile Liquids
289(3)
9.5.3.2 Experimental Work
292(1)
9.5.3.3 Results and Discussion
293(5)
9.5.4 Conclusion
298(1)
9.6 Mixing Behavior in the α-Modification
298(9)
9.6.1 Evidence for Partial Retained Chain Mobility in the α-Modification
298(2)
9.6.1.1 Supercooling of the α-Modification
300(1)
9.6.1.2 Excess Gibbs Energy in the α-Modification
301(1)
9.6.2 Comparison of Experimental and Calculated α-Melting Ranges
301(1)
9.6.2.1 Experimental Procedure
301(4)
9.6.2.2 Calculations
305(1)
9.6.2.3 Results
305(1)
9.6.3 Conclusion
306(1)
9.7 Mixing Behavior in the β'- and β-Modifications
307(54)
9.7.1 Excess Gibbs Energy
308(1)
9.7.1.1 Excess Gibbs Energy Models
308(2)
9.7.1.2 Regular or Athermal?
310(1)
9.7.1.3 Phase Diagram
310(3)
9.7.2 Experimental Phase Diagrams of TAGs
313(1)
9.7.2.1 Measuring Phase Diagrams
313(3)
9.7.2.2 Literature Overview
316(2)
9.7.2.3 Fitting Experimental Phase Diagrams
318(1)
9.7.2.4 Saturated TAGs
318(6)
9.7.2.5 Saturated TAGs + Trans-TAGs
324(1)
9.7.2.6 Saturated TAGs + Mono- and Di-Unsaturated TAGs
325(2)
9.7.2.7 Unsaturated TAGs
327(4)
9.7.2.8 Summarizing
331(2)
9.7.3 Alternative to Phase Diagram Determination
333(1)
9.7.3.1 How to Proceed?
333(3)
9.7.3.2 Formulation of an Alternative Method
336(1)
9.7.3.3 DSC Curves of Binary Systems Dissolved in a Liquid TAG
337(2)
9.7.3.4 What Experiments?
339(1)
9.7.4 Experimental
339(1)
9.7.4.1 Principles of DSC
339(1)
9.7.4.2 Thermal Lag
340(1)
9.7.4.3 Experimental Procedure
340(3)
9.7.5 Results
343(1)
9.7.5.1 PSP and MPM with SEE and ESE
343(3)
9.7.5.2 PSP and MPM with EPE and PEE
346(3)
9.7.5.3 PSP and MPM with EEE
349(1)
9.7.5.4 PSP and MPM with cis-Unsaturated TAGs
350(4)
9.7.6 Discussion
354(1)
9.7.6.1 Use of DSC Melting Curves
354(2)
9.7.6.2 Binary Interaction Parameters
356(1)
9.7.6.3 Kinetics
357(1)
9.7.7 Ternary Solids
358(1)
9.7.8 Conclusion
359(2)
9.8 Predicting Interaction Parameters
361(14)
9.8.1 Are Interaction Parameters Related to Structural Differences?
361(1)
9.8.1.1 Degree of Isomorphism
361(2)
9.8.1.2 TAGs and the Degree of Isomorphism ϵ
363(3)
9.8.2 Calculation of Lattice Distortion
366(1)
9.8.2.1 Equivalent Distortions in the β-2 Modification
367(3)
9.8.2.2 β-2A Lattice Distortion Calculations
370(2)
9.8.3 Empirical Method
372(1)
9.8.3.1 Method
372(2)
9.8.3.2 Discussion
374(1)
9.8.4 Conclusion
375(1)
9.9 Practical Applications
375(12)
9.9.1 Prediction of Melting Ranges
375(3)
9.9.2 Fractional Crystallization
378(1)
9.9.3 Recrystallization Phenomena
379(1)
9.9.3.1 Influence of Precrystallization and Temperature Cycling
379(2)
9.9.3.2 Sandiness
381(1)
9.9.3.3 Conclusion
382(1)
9.9.4 Applications outside Edible Oils and Fats
383(1)
9.9.4.1 Solid-Liquid Phase Behavior of n-Alkanes
383(1)
9.9.4.2 Petroleum Waxes
384(1)
9.9.4.3 β-Substituted Naphthalenes
385(1)
9.9.5 Conclusions of This
Chapter
386(1)
9.10 Summary
387(1)
List of Symbols
388(27)
Appendix 9.A Pure Component Data
390(15)
Appendix 9.B Specific Retention Volumes of Several Probes in Stationary Phases of Liquid TAGs
405(3)
Appendix 9.C Purity of the TAGs Used in Section 15.7
408(1)
Appendix 9.D Binary Phase Diagrams of TAGs: Data
409(6)
References
415(4)
Chapter 10 Experimental Methodology
419(72)
Rodrigo Campos
10.1 Introduction
419(1)
10.2 Crystallization
419(14)
10.2.1 Nucleation Events
422(1)
10.2.1.1 Measurement of Inductions Times by Light Scattering
422(3)
10.2.1.2 Monitoring Early Crystal Growth by Polarized Light Microscopy
425(3)
10.2.2 Crystallization Kinetics by Nuclear Magnetic Resonance
428(2)
10.2.2.1 Procedure
430(3)
10.3 Thermal Properties
433(13)
10.3.1 Melt Profiles by Solid Fat Content
433(1)
10.3.1.1 Procedure
433(2)
10.3.2 Iso-Solid Phase Diagram Construction
435(1)
10.3.2.1 Procedure
436(1)
10.3.3 Thermal Behavior By Differential Scanning Calorimetry
437(1)
10.3.3.1 Procedure
437(9)
10.4 Polymorphism
446(7)
10.4.1 X-Ray Diffraction
447(2)
10.4.1.1 X-Ray Diffractometer
449(1)
10.4.1.2 Procedure
450(3)
10.5 Microstructure
453(10)
10.5.1 Polarized Light Microscopy
453(1)
10.5.1.1 Procedure
454(9)
10.6 Mechanical Properties
463(13)
10.6.1 Small Deformation Rheology
463(4)
10.6.1.1 Procedure
467(5)
10.6.2 Large Deformation Testing
472(2)
10.6.2.1 Procedure
474(2)
10.7 Fractal Dimension
476(5)
10.7.1 Particle Counting Method to Determine Fractal Dimension
477(1)
10.7.2 Box Counting Method to Determine Fractal Dimension
478(1)
10.7.3 Rheological Method to Determine Fractal Dimension
479(1)
10.7.3.1 Procedure
480(1)
10.8 Oil Migration
481(6)
10.8.1 Oil Loss Assay
482(1)
10.8.1.1 Procedure
482(2)
10.8.2 Flatbed Scanner Imaging Technique
484(1)
10.8.2.1 Procedure
484(3)
Acknowledgments
487(1)
References
487(4)
Index 491
Alejandro G. Marangoni, Professor and Canada Research Chair, Food and Soft Materials Science, University of Guelph, ON, Canada. His work concentrates on the physical properties of foods, particularly fat crystallization and structure.