Introduction |
|
xv | |
|
Chapter 1 Crystallography and Polymorphism |
|
|
1 | (26) |
|
|
1 | (1) |
|
1.2 Lattices and Unit Cells |
|
|
1 | (3) |
|
|
4 | (1) |
|
1.4 Powder X-Ray Diffraction and Bragg's Law |
|
|
5 | (2) |
|
1.5 Typical Powder XRD Setup |
|
|
7 | (2) |
|
|
9 | (1) |
|
1.7 Crystallographic Structure of Fats |
|
|
10 | (14) |
|
1.7.1 Single Crystal Structures |
|
|
10 | (3) |
|
|
13 | (6) |
|
1.7.2.1 Energetics of Crystallization as It Relates to Polymorphism |
|
|
19 | (1) |
|
1.7.2.2 Subcells and Subcell Packing |
|
|
20 | (4) |
|
|
24 | (3) |
|
Chapter 2 Nucleation and Crystalline Growth Kinetics |
|
|
27 | (74) |
|
2.1 Introduction to Crystallization |
|
|
27 | (8) |
|
2.1.1 Nucleation Overview |
|
|
27 | (2) |
|
2.1.2 Quantification of the Driving Force for Crystallization |
|
|
29 | (2) |
|
2.1.3 Better Understanding the Chemical Potential |
|
|
31 | (4) |
|
2.2 Crystallization Kinetics |
|
|
35 | (22) |
|
|
35 | (1) |
|
2.2.1.1 Isothermal Steady-State Nucleation Theory |
|
|
35 | (3) |
|
2.2.1.2 Theory of Reaction Rates |
|
|
38 | (2) |
|
2.2.1.3 Determination of the Free Energy of Nucleation for an Isothermal Process |
|
|
40 | (2) |
|
2.2.1.4 Estimates of ΔHr and Vsm |
|
|
42 | (1) |
|
2.2.1.5 Metastability and Free Energy of Nucleation |
|
|
43 | (1) |
|
2.2.2 Isothermal Crystal Growth---The Avrami Model |
|
|
43 | (2) |
|
2.2.2.1 Derivation of the Model |
|
|
45 | (9) |
|
|
54 | (3) |
|
2.3 Isothermal Crystallization Kinetics and Microstructure |
|
|
57 | (22) |
|
2.3.1 Relationship between Isothermal Nucleation Kinetics and the Fractal Dimension of a Fractal Cluster |
|
|
57 | (4) |
|
2.3.2 Relationship between Fractal Cluster Size and the Isothermal Free Energy of Nucleation |
|
|
61 | (4) |
|
2.3.3 Fractal Growth of Milk Fat Crystals Is Unaffected by Microstructural Confinement |
|
|
65 | (5) |
|
2.3.4 Comparison of Experimental Techniques Used in Lipid Crystallization Studies |
|
|
70 | (9) |
|
2.4 Nonisothermal Nucleation of Fats |
|
|
79 | (17) |
|
2.4.1 Isothermal, Near-Isothermal, and Nonisothermal Processes |
|
|
79 | (1) |
|
2.4.2 Formulation of the Time-Dependent Supercooling Parameter |
|
|
80 | (2) |
|
2.4.3 Probabilistic Approach to Modeling Nonisothermal Nucleation Kinetics |
|
|
82 | (1) |
|
2.4.4 Clustering Energy for Nonisothermal Nucleation |
|
|
83 | (1) |
|
2.4.5 Special Case When β Is Very Small |
|
|
84 | (1) |
|
2.4.6 Nonisothermal Nucleation of Five Commercial Fats---A Practical Example of This Approach |
|
|
85 | (1) |
|
2.4.6.1 Materials and Methods Used |
|
|
85 | (2) |
|
|
87 | (9) |
|
|
96 | (5) |
|
Chapter 3 Intermolecular Forces in Triacylglycerol Particles and Oils |
|
|
101 | (24) |
|
|
|
101 | (1) |
|
3.2 Van der Waals Interactions |
|
|
102 | (2) |
|
|
104 | (13) |
|
3.3.1 Lifshitz Theory and the Coupled Dipole Method |
|
|
104 | (4) |
|
3.3.2 The Lennard Jones 6-12 Potential |
|
|
108 | (2) |
|
3.3.3 Fractal Model and Semi-Classical Model |
|
|
110 | (2) |
|
3.3.4 Coarse-Grained Approaches---1 |
|
|
112 | (1) |
|
3.3.4.1 Example: Aggregation of Triacylglycerol CNPs |
|
|
112 | (2) |
|
3.3.4.2 Application: Oils in Confined Nanospaces |
|
|
114 | (2) |
|
3.3.5 Coarse-Grained Approaches---2 |
|
|
116 | (1) |
|
3.4 Van der Waals Interactions and Rheological Characteristics |
|
|
117 | (1) |
|
3.5 X-Ray Scattering and Fractal Dimensions |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
119 | (6) |
|
Chapter 4 Rheology of Fats |
|
|
125 | (22) |
|
|
|
|
125 | (1) |
|
4.2 Stress-Strain Relationships and Elastic |
|
|
125 | (2) |
|
4.2.1 Shear and Bulk Moduli |
|
|
125 | (2) |
|
4.3 Types of Stresses and Corresponding |
|
|
127 | (2) |
|
4.3.1 Definitions of Moduli |
|
|
127 | (2) |
|
|
129 | (10) |
|
4.4.1 Structural Theory of Elasticity |
|
|
129 | (10) |
|
4.5 Yield Value from Constant Force Cone |
|
|
139 | (2) |
|
4.5.1 Penetrometry Measurements |
|
|
139 | (2) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (2) |
|
4.7.1 Ideal, Newtonian Behavior |
|
|
142 | (1) |
|
4.7.2 Nonideal, Non-Newtonian Behavior |
|
|
142 | (1) |
|
4.7.2.1 Time-Independent Fluids |
|
|
143 | (1) |
|
4.7.2.2 Time-Dependent Fluids |
|
|
144 | (1) |
|
4.8 Modeling Flow Behavior |
|
|
144 | (1) |
|
|
145 | (2) |
|
Chapter 5 Viscoelastic Properties of Fats |
|
|
147 | (12) |
|
5.1 Creep and Recovery/Stress Relaxation |
|
|
148 | (10) |
|
|
149 | (1) |
|
|
150 | (2) |
|
|
152 | (2) |
|
5.1.4 Real Viscoelastic Materials |
|
|
154 | (1) |
|
5.1.5 Creep-Recovery Studies of Fats |
|
|
155 | (3) |
|
|
158 | (1) |
|
Chapter 6 Dynamic Rheological Studies of Fats |
|
|
159 | (14) |
|
|
159 | (14) |
|
6.1.1 Theoretical Considerations |
|
|
160 | (1) |
|
6.1.1.1 Hookean Solids (Springs) |
|
|
161 | (1) |
|
6.1.1.2 Newtonian Fluids (Dashpots) |
|
|
162 | (1) |
|
6.1.1.3 Kelvin-Voigt Viscoelastic Solid |
|
|
163 | (1) |
|
6.1.1.4 Maxwell Viscoelastic Fluid |
|
|
164 | (2) |
|
6.1.1.5 Real Viscoelastic Materials---Generalization of the Model |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
6.1.4 Some Basic Considerations for Rheological Studies of Fats under Dynamic Conditions |
|
|
169 | (4) |
|
Chapter 7 Nanostructure and Microstructure of Fats |
|
|
173 | (60) |
|
|
|
|
|
|
173 | (1) |
|
7.2 Mesoscale and Nanoscale in Fat Crystal Networks |
|
|
174 | (29) |
|
|
180 | (6) |
|
7.2.2 Scaling Theory as Applied to Colloidal Gels |
|
|
186 | (3) |
|
7.2.3 Elastic Properties of Colloidal Gels: Exploiting the Fractal Nature of the Aggregates |
|
|
189 | (8) |
|
7.2.4 Application of Scaling Theory Developed for Colloidal Gels to Fat Crystal Networks |
|
|
197 | (4) |
|
|
201 | (2) |
|
7.3 Where Lies the Fractality in Fat Crystal Networks? |
|
|
203 | (23) |
|
7.3.1 Structural Model of the Fat Crystal Network |
|
|
204 | (1) |
|
7.3.2 Characterizing Microstructure |
|
|
205 | (4) |
|
|
209 | (2) |
|
7.3.4 Weak Link Revisited |
|
|
211 | (2) |
|
7.3.5 Relating the Particle Volume Fraction to the Solid Fat Content |
|
|
213 | (1) |
|
|
214 | (1) |
|
7.3.7 Physical Significance of Fractal Dimension |
|
|
215 | (6) |
|
7.3.8 Other Methods for the Determination of the Fractal Dimension |
|
|
221 | (1) |
|
7.3.8.1 Fractal Dimension from Oil Permeability Measurements |
|
|
221 | (2) |
|
7.3.8.2 Fractal Dimensions by Light Scattering |
|
|
223 | (1) |
|
7.3.8.3 Thermomechanical Method for Determining Fractal Dimensions |
|
|
224 | (1) |
|
7.3.8.4 Fractal Dimension from the Stress at the Limit of Linearity: Fats Are in the Weak-Link Rheological Regime |
|
|
225 | (1) |
|
7.3.9 Modified Fractal Model |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (6) |
|
Chapter 8 Yield Stress and Elastic Modulus of a Fat Crystal Network |
|
|
233 | (8) |
|
|
233 | (7) |
|
|
240 | (1) |
|
Chapter 9 Liquid-Multiple Solid Phase Equilibria in Fats |
|
|
241 | (178) |
|
|
|
|
|
|
|
|
|
|
|
|
|
9.1 Introduction and Problem Definition |
|
|
241 | (10) |
|
9.1.1 Solid-Liquid Phase Equilibria and Fats |
|
|
241 | (2) |
|
9.1.2 Triacylglycerols: Nomenclature |
|
|
243 | (1) |
|
9.1.3 Triacylglycerols: Polymorphism |
|
|
244 | (1) |
|
9.1.3.1 Basic Polymorphic Forms of TAGs |
|
|
244 | (2) |
|
|
246 | (2) |
|
|
248 | (1) |
|
9.1.4 Methods for Predicting Solid Phase Composition and Quantity |
|
|
248 | (1) |
|
9.1.4.1 Linear Programming/Multiple Regression |
|
|
249 | (1) |
|
9.1.4.2 Excess Contribution Method |
|
|
249 | (1) |
|
9.1.4.3 TAGs Inductors de Crystallization Method |
|
|
250 | (1) |
|
9.1.4.4 Classification of TAGs Method |
|
|
250 | (1) |
|
9.1.4.5 Other TAG-Based Methods |
|
|
251 | (1) |
|
|
251 | (1) |
|
9.2 Approach to the Problem |
|
|
251 | (5) |
|
9.2.1 Solid-Liquid Equilibrium Thermodynamics |
|
|
251 | (2) |
|
9.2.2 Kinetics of Crystallization |
|
|
253 | (1) |
|
9.2.2.1 Polymorphism and Kinetics of Crystallization |
|
|
253 | (1) |
|
|
254 | (1) |
|
9.2.2.3 Poor Crystallinity |
|
|
254 | (1) |
|
9.2.3 Conclusion and Approach to the Problem |
|
|
255 | (1) |
|
|
256 | (16) |
|
|
256 | (1) |
|
9.3.2 Initial Estimates and Stability Tests |
|
|
257 | (1) |
|
9.3.2.1 Splitting Component Method |
|
|
258 | (1) |
|
9.3.2.2 Michelsen's Tangent Plane Criterion Method |
|
|
259 | (3) |
|
9.3.3 Iterating Procedures |
|
|
262 | (1) |
|
9.3.3.1 Direct Substitution |
|
|
262 | (1) |
|
9.3.3.2 Gibbs Free Energy Minimization |
|
|
263 | (4) |
|
9.3.3.3 Removal of Phases |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
268 | (1) |
|
|
269 | (1) |
|
9.3.5 Calculation of Differential Scanning Calorimetry Curves |
|
|
270 | (1) |
|
|
271 | (1) |
|
9.4 Pure Component Properties |
|
|
272 | (15) |
|
9.4.1 Literature Data and Correlations |
|
|
272 | (1) |
|
9.4.1.1 Correlating Enthalpy of Fusion and Melting Points of Lipids |
|
|
272 | (2) |
|
9.4.1.2 Data and Correlations for TAGs |
|
|
274 | (2) |
|
|
276 | (1) |
|
9.4.3 Development of the Correlation |
|
|
277 | (1) |
|
|
277 | (6) |
|
|
283 | (3) |
|
|
286 | (1) |
|
9.5 Mixing Behavior in Liquid State |
|
|
287 | (11) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
9.5.3.1 Method for Determination of Activity Coefficients of Mixtures of Nonvolatile Liquids |
|
|
289 | (3) |
|
9.5.3.2 Experimental Work |
|
|
292 | (1) |
|
9.5.3.3 Results and Discussion |
|
|
293 | (5) |
|
|
298 | (1) |
|
9.6 Mixing Behavior in the α-Modification |
|
|
298 | (9) |
|
9.6.1 Evidence for Partial Retained Chain Mobility in the α-Modification |
|
|
298 | (2) |
|
9.6.1.1 Supercooling of the α-Modification |
|
|
300 | (1) |
|
9.6.1.2 Excess Gibbs Energy in the α-Modification |
|
|
301 | (1) |
|
9.6.2 Comparison of Experimental and Calculated α-Melting Ranges |
|
|
301 | (1) |
|
9.6.2.1 Experimental Procedure |
|
|
301 | (4) |
|
|
305 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
9.7 Mixing Behavior in the β'- and β-Modifications |
|
|
307 | (54) |
|
9.7.1 Excess Gibbs Energy |
|
|
308 | (1) |
|
9.7.1.1 Excess Gibbs Energy Models |
|
|
308 | (2) |
|
9.7.1.2 Regular or Athermal? |
|
|
310 | (1) |
|
|
310 | (3) |
|
9.7.2 Experimental Phase Diagrams of TAGs |
|
|
313 | (1) |
|
9.7.2.1 Measuring Phase Diagrams |
|
|
313 | (3) |
|
9.7.2.2 Literature Overview |
|
|
316 | (2) |
|
9.7.2.3 Fitting Experimental Phase Diagrams |
|
|
318 | (1) |
|
|
318 | (6) |
|
9.7.2.5 Saturated TAGs + Trans-TAGs |
|
|
324 | (1) |
|
9.7.2.6 Saturated TAGs + Mono- and Di-Unsaturated TAGs |
|
|
325 | (2) |
|
|
327 | (4) |
|
|
331 | (2) |
|
9.7.3 Alternative to Phase Diagram Determination |
|
|
333 | (1) |
|
|
333 | (3) |
|
9.7.3.2 Formulation of an Alternative Method |
|
|
336 | (1) |
|
9.7.3.3 DSC Curves of Binary Systems Dissolved in a Liquid TAG |
|
|
337 | (2) |
|
9.7.3.4 What Experiments? |
|
|
339 | (1) |
|
|
339 | (1) |
|
9.7.4.1 Principles of DSC |
|
|
339 | (1) |
|
|
340 | (1) |
|
9.7.4.3 Experimental Procedure |
|
|
340 | (3) |
|
|
343 | (1) |
|
9.7.5.1 PSP and MPM with SEE and ESE |
|
|
343 | (3) |
|
9.7.5.2 PSP and MPM with EPE and PEE |
|
|
346 | (3) |
|
9.7.5.3 PSP and MPM with EEE |
|
|
349 | (1) |
|
9.7.5.4 PSP and MPM with cis-Unsaturated TAGs |
|
|
350 | (4) |
|
|
354 | (1) |
|
9.7.6.1 Use of DSC Melting Curves |
|
|
354 | (2) |
|
9.7.6.2 Binary Interaction Parameters |
|
|
356 | (1) |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
359 | (2) |
|
9.8 Predicting Interaction Parameters |
|
|
361 | (14) |
|
9.8.1 Are Interaction Parameters Related to Structural Differences? |
|
|
361 | (1) |
|
9.8.1.1 Degree of Isomorphism |
|
|
361 | (2) |
|
9.8.1.2 TAGs and the Degree of Isomorphism ϵ |
|
|
363 | (3) |
|
9.8.2 Calculation of Lattice Distortion |
|
|
366 | (1) |
|
9.8.2.1 Equivalent Distortions in the β-2 Modification |
|
|
367 | (3) |
|
9.8.2.2 β-2A Lattice Distortion Calculations |
|
|
370 | (2) |
|
|
372 | (1) |
|
|
372 | (2) |
|
|
374 | (1) |
|
|
375 | (1) |
|
9.9 Practical Applications |
|
|
375 | (12) |
|
9.9.1 Prediction of Melting Ranges |
|
|
375 | (3) |
|
9.9.2 Fractional Crystallization |
|
|
378 | (1) |
|
9.9.3 Recrystallization Phenomena |
|
|
379 | (1) |
|
9.9.3.1 Influence of Precrystallization and Temperature Cycling |
|
|
379 | (2) |
|
|
381 | (1) |
|
|
382 | (1) |
|
9.9.4 Applications outside Edible Oils and Fats |
|
|
383 | (1) |
|
9.9.4.1 Solid-Liquid Phase Behavior of n-Alkanes |
|
|
383 | (1) |
|
|
384 | (1) |
|
9.9.4.3 β-Substituted Naphthalenes |
|
|
385 | (1) |
|
9.9.5 Conclusions of This Chapter |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
388 | (27) |
|
Appendix 9.A Pure Component Data |
|
|
390 | (15) |
|
Appendix 9.B Specific Retention Volumes of Several Probes in Stationary Phases of Liquid TAGs |
|
|
405 | (3) |
|
Appendix 9.C Purity of the TAGs Used in Section 15.7 |
|
|
408 | (1) |
|
Appendix 9.D Binary Phase Diagrams of TAGs: Data |
|
|
409 | (6) |
|
|
415 | (4) |
|
Chapter 10 Experimental Methodology |
|
|
419 | (72) |
|
|
|
419 | (1) |
|
|
419 | (14) |
|
|
422 | (1) |
|
10.2.1.1 Measurement of Inductions Times by Light Scattering |
|
|
422 | (3) |
|
10.2.1.2 Monitoring Early Crystal Growth by Polarized Light Microscopy |
|
|
425 | (3) |
|
10.2.2 Crystallization Kinetics by Nuclear Magnetic Resonance |
|
|
428 | (2) |
|
|
430 | (3) |
|
|
433 | (13) |
|
10.3.1 Melt Profiles by Solid Fat Content |
|
|
433 | (1) |
|
|
433 | (2) |
|
10.3.2 Iso-Solid Phase Diagram Construction |
|
|
435 | (1) |
|
|
436 | (1) |
|
10.3.3 Thermal Behavior By Differential Scanning Calorimetry |
|
|
437 | (1) |
|
|
437 | (9) |
|
|
446 | (7) |
|
|
447 | (2) |
|
10.4.1.1 X-Ray Diffractometer |
|
|
449 | (1) |
|
|
450 | (3) |
|
|
453 | (10) |
|
10.5.1 Polarized Light Microscopy |
|
|
453 | (1) |
|
|
454 | (9) |
|
10.6 Mechanical Properties |
|
|
463 | (13) |
|
10.6.1 Small Deformation Rheology |
|
|
463 | (4) |
|
|
467 | (5) |
|
10.6.2 Large Deformation Testing |
|
|
472 | (2) |
|
|
474 | (2) |
|
|
476 | (5) |
|
10.7.1 Particle Counting Method to Determine Fractal Dimension |
|
|
477 | (1) |
|
10.7.2 Box Counting Method to Determine Fractal Dimension |
|
|
478 | (1) |
|
10.7.3 Rheological Method to Determine Fractal Dimension |
|
|
479 | (1) |
|
|
480 | (1) |
|
|
481 | (6) |
|
|
482 | (1) |
|
|
482 | (2) |
|
10.8.2 Flatbed Scanner Imaging Technique |
|
|
484 | (1) |
|
|
484 | (3) |
|
|
487 | (1) |
|
|
487 | (4) |
Index |
|
491 | |