Muutke küpsiste eelistusi

E-raamat: Terrestrial Radiation Effects in ULSI Devices and Electronic Systems

  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 26-Nov-2014
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118479315
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 149,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 26-Nov-2014
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118479315
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides the reader with knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. The author covers faults and failures in ULSI devices induced by a wide variety of radiation fields, including electrons, alpha-rays, muons, gamma rays, neutrons and heavy ions. Readers will learn how to make numerical models from physical insights, to determine the kind of mathematical approaches that should be implemented to analyze radiation effects. A wide variety of prediction, detection, characterization and mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them, and explains how electronic systems including servers and routers are shut down due to environmental radiation.

  • Provides an understanding of how electronic systems are shut down due to environmental radiation by constructing physical models and numerical algorithms
  • Covers both terrestrial and avionic-level conditions
  • Logically presented with each chapter explaining the background physics to the topic followed by various modelling techniques, and chapter summary
  • Written by a widely-recognized authority in soft-errors in electronic devices
  • Code samples available for download from the Companion Website

This book is targeted at researchers and graduate students in nuclear and space radiation, semiconductor physics and electron devices, as well as other areas of applied physics modelling. Researchers and students interested in how a variety of physical phenomena can be modelled and numerically treated will also find this book to present helpful methods.

About the Author xiii
Preface xv
Acknowledgements xvii
Acronyms xix
1 Introduction 1(22)
1.1 Basic Knowledge on Terrestrial Secondary Particles
1(3)
1.2 CMOS Semiconductor Devices and Systems
4(3)
1.3 Two Major Fault Modes: Charge Collection and Bipolar Action
7(5)
1.4 Four Hierarchies in Faulty Conditions in Electronic Systems: Fault - Error - Hazard - Failure
12(2)
1.5 Historical Background of Soft-Error Research
14(4)
1.6 General Scope of This Book
18(1)
References
18(5)
2 Terrestrial Radiation Fields 23(10)
2.1 General Sources of Radiation
23(1)
2.2 Backgrounds for Selection of Terrestrial High-Energy Particles
23(2)
2.3 Spectra at the Avionics Altitude
25(3)
2.4 Radioisotopes in the Field
28(3)
2.5 Summary of
Chapter 2
31(1)
References
31(2)
3 Fundamentals of Radiation Effects 33(16)
3.1 General Description of Radiation Effects
33(2)
3.2 Definition of Cross Section
35(1)
3.3 Radiation Effects by Photons (Gamma-ray and X-ray)
36(1)
3.4 Radiation Effects by Electrons (Beta-ray)
37(2)
3.5 Radiation Effects by Muons
39(1)
3.6 Radiation Effects by Protons
40(3)
3.7 Radiation Effects by Alpha-Particles
43(1)
3.8 Radiation Effects by Low-Energy Neutrons
43(2)
3.9 Radiation Effects by High-Energy Neutrons
45(1)
3.10 Radiation Effects by Heavy Ions
45(1)
3.11 Summary of
Chapter 3
46(1)
References
46(3)
4 Fundamentals of Electronic Devices and Systems 49(12)
4.1 Fundamentals of Electronic Components
49(6)
4.1.1 DRAM (Dynamic Random Access Memory)
49(1)
4.1.2 CMOS Inverter
49(2)
4.1.3 SRAM (Static Random Access Memory)
51(1)
4.1.4 Floating Gate Memory (Flash Memory)
51(2)
4.1.5 Sequential Logic Devices
53(1)
4.1.6 Combinational Logic Devices
54(1)
4.2 Fundamentals of Electronic Systems
55(3)
4.2.1 FPGA (Field Programmable Gate Array)
55(1)
4.2.2 Processor
56(2)
4.3 Summary of
Chapter 4
58(1)
References
58(3)
5 Irradiation Test Methods for Single Event Effects 61(46)
5.1 Field Test
61(3)
5.2 Alpha Ray SEE Test
64(2)
5.3 Heavy Ion Particle Irradiation Test
66(5)
5.4 Proton Beam Test
71(4)
5.5 Muon Test Method
75(3)
5.6 Thermal/Cold Neutron Test Methods
78(2)
5.7 High-Energy Neutron Test
80(14)
5.7.1 Medium-Energy Neutron Source by Using Radioisotopes
80(1)
5.7.2 Monoenergetic Neutron Test
80(4)
5.7.3 Quasi-Monoenergetic Neutron Test
84(6)
5.7.4 Spallation Neutron Test
90(2)
5.7.5 Attenuation of Neutron Flux and Energy
92(2)
5.8 Testing Conditions and Matters That Require Attention
94(2)
5.8.1 Memories
94(1)
5.8.2 Circuits
94(2)
5.9 Summary of
Chapter 5
96(1)
References
96(11)
6 Integrated Device Level Simulation Techniques 107(50)
6.1 Overall Multi-scale and Multi-physics Soft-Error Analysis System
107(5)
6.2 Relativistic Binary Collision and Nuclear Reaction Models
112(7)
6.2.1 Energy Bin Setting for a Particle Energy Spectrum
112(1)
6.2.2 Relativistic Binary Collision Model
113(2)
6.2.3 ALS (Absolute Laboratory System) and ALLS (Aligned Laboratory System)
115(4)
6.3 Intra-nuclear Cascade (INC) Model for High-Energy Neutrons and Protons
119(3)
6.3.1 Penetration of a Nucleon into a Target Nucleus
119(2)
6.3.2 Calculation of Probability of Binary Collision between Two Nucleons in the Target Nucleus
121(1)
6.3.3 Determination of Condition in Nucleon-Nucleon Collision
121(1)
6.4 Evaporation Model for High-Energy Neutrons and Protons
122(3)
6.5 Generalised Evaporation Model (GEM) for Inverse Reaction Cross Sections
125(3)
6.6 Neutron Capture Reaction Model
128(1)
6.7 Automated Device Modelling
129(2)
6.8 Setting of Random Position of Spallation Reaction Point in a Component
131(2)
6.9 Algorithms for Ion Tracking
133(2)
6.10 Fault Mode Models
135(6)
6.11 Calculation of Cross Section
141(1)
6.12 Prediction for Scaling Effects of Soft Error Down to 22 nm Design Rule in SRAMs
142(2)
6.13 Evaluation of Effects of Heavy Elements in Semiconductor Devices by Nuclear Spallation Reaction
144(2)
6.14 Upper Bound Fault Simulation Model
146(1)
6.15 Upper Bound Fault Simulation Results
147(4)
6.15.1 Electrons
147(1)
6.15.2 Muons
148(1)
6.15.3 Direct Ionisation by Proton
149(1)
6.15.4 Proton Spallation
149(2)
6.15.5 Low-Energy Neutron
151(1)
6.15.6 High-Energy Neutron Spallation
151(1)
6.15.7 Comparison of Secondary Cosmic Rays
151(1)
6.16 Upper Bound Simulation Method for SOC (System On Chip)
151(3)
6.17 Summary of
Chapter 6
154(1)
References
154(3)
7 Prediction, Detection and Classification Techniques of Faults, Errors and Failures 157(50)
7.1 Overview of Failures in the Field
157(2)
7.2 Prediction and Estimation of Faulty Conditions due to SEE
159(9)
7.2.1 Substrate/Well/Device Level
159(3)
7.2.2 Circuit Level
162(2)
7.2.3 Chip/Processor Level
164(2)
7.2.4 Board Level
166(1)
7.2.5 Operating System Level
167(1)
7.2.6 Application Level
167(1)
7.3 In-situ Detection of Faulty Conditions due to SEE
168(7)
7.3.1 Substrate/Well Level
168(2)
7.3.2 Device Level
170(1)
7.3.3 Circuit Level
170(1)
7.3.4 Chip/Processor Level
171(3)
7.3.5 Board/OS/Application Level
174(1)
7.4 Classification of Faulty Conditions
175(8)
7.4.1 Classification of Faults
175(1)
7.4.2 Classification of Errors in Time Domain
175(2)
7.4.3 MCU Classification Techniques of Memories in Topological Space Domain
177(6)
7.4.4 Classification of Errors in Sequential Logic Devices
183(1)
7.4.5 Classification of Failures: Chip/Board Level Partial/Full Irradiation Test
183(1)
7.5 Faulty Modes in Each Hierarchy
183(10)
7.5.1 Fault Modes
183(3)
7.5.2 Error Modes
186(3)
7.5.3 Failure Modes
189(4)
7.6 Summary of
Chapter 7
193(2)
References
195(12)
8 Mitigation Techniques of Failures in Electronic Components and Systems 207(42)
8.1 Conventional Stack-layer Based Mitigation Techniques, Their Limitations and Improvements
207(25)
8.1.1 Substrate/Device Level
207(4)
8.1.2 Circuit/Chip/Processor Layer
211(14)
8.1.3 Multi-core Processor
225(2)
8.1.4 Board/OS/Application Level
227(2)
8.1.5 Real-Time Systems: Automotives and Avionics
229(1)
8.1.6 Limitations and Improvements
230(2)
8.2 Challenges for Hyper Mitigation Techniques
232(8)
8.2.1 Co-operation of Hardware and Software
232(1)
8.2.2 Mitigation of Failures under Variations in SEE Responses
232(3)
8.2.3 Cross-Layer Reliability (CLR) /Inter-Layer Built-In Reliability (LABIR)
235(1)
8.2.4 Symptom-Driven System Resilient Techniques
236(2)
8.2.5 Comparison of Mitigation Strategies for System Failure
238(1)
8.2.6 Challenges in the Near Future
238(2)
8.3 Summary of
Chapter 8
240(1)
References
240(9)
9 Summary 249(2)
9.1 Summary of Terrestrial Radiation Effects on ULSI Devices and Electronic Systems
249(1)
9.2 Directions and Challenges in the Future
250(1)
Appendices 251(8)
A.1 Hamming Code
251(1)
A.2 Marching Algorithms
252(1)
A.3 Why VB Is Used For Simulation?
253(1)
A.4 Basic Knowledge of Visual Basic
253(1)
A.5 Database Handling by Visual Basic and SQL
253(1)
A.6 Algorithms in Text Handling and Sample Codes
254(1)
A.7 How to Make a Self-Consistent Calculation
255(1)
A.8 Sample Code for Random Selection of Hit Points in a Triangle
256(3)
Index 259
Eishi, H. Ibe, Chief Researcher, Yokohama Research Laboratory, Hitachi, Ltd. Dr.Eishi Hidefumi IBE received his Ph.D degree in Nuclear Engineering from Osaka University, Japan in 1985.  His expertise covers a wide area of science, such as elementary particle/cosmic ray physics, nuclear /neutron physics, semiconductor physics, mathematics and computing technologies, ion-implantation/mixing and accelerator technologies, electro-chemistry, data-base handling, and BS/Auger/SEM/ Laser-beam micro analysis.  He has authored more than 90 international technical papers and presentations including 22 invited contributions in the field of radiation effects.  Dr.Ibe was elevated to IEEE Fellow for contributions to analysis of soft-errors in memory devices in 2008.