Muutke küpsiste eelistusi

E-raamat: Text Mining in Educational Research: Topic Modeling and Latent Dirichlet Allocation

Edited by
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Jan-2025
  • Kirjastus: Springer Nature
  • Keel: eng
  • ISBN-13: 9789819778584
  • Formaat - EPUB+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Jan-2025
  • Kirjastus: Springer Nature
  • Keel: eng
  • ISBN-13: 9789819778584

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This edited book consolidates and documents recent research on topic modeling in text mining using Latent Dirichlet Allocation (LDA). Written by leading experts in topic modeling, it covers a wide range of areas, such as theory building, systematic research, and innovative applications. This book offers a thorough exploration of the latest advancements in topic modeling. From identifying issues in unstructured text data to categorizing documents and extracting valuable insights, the book provides practical use of LDA as a powerful tool in qualitative and quantitative research. The chapters discuss the rapidly evolving landscape of topic modeling algorithms and offer tangible examples and applications of LDA in educational research, showcasing its real-world impact. This book dives into the heart of educational research and uncovers the transformative potential of Latent Dirichlet Allocation in shaping the future of topic modeling. This book is a valuable resource, highlighting exemplary works and rapid advances in the field. It appeals to students, researchers, and practitioners interested in text mining.





 
Using the Structural Topic Model to Explore Learner Satisfaction with
LMOOCs.- Text Mining Applications in Educational Research.-  The Advent of
Topic Noise Models.- Formalizing the Social Aspects of Topic Modeling: Focus
on the Social Positioning of Researchers.
Myint Swe Khine teaches at the School of Education, Curtin University, Australia. He has more than 30 years of experience in teacher education. He received master's degrees from the University of Southern California, USA, University of Surrey, UK, and the University of Leicester, UK, and a doctoral degree from Curtin University, Australia. He worked at the National Institute of Education, Nanyang Technological University, Singapore, and was a professor at Emirates College for Advanced Education in the United Arab Emirates. He has wide-ranging research interests in teacher education, science education, learning sciences, psychometrics, measurement, assessment, and evaluation. He is a member of the Editorial Advisory Board of several international academic journals. Throughout his career, he has published over 40 edited books. The most recent volumes include Rhizomatic Metaphor: Legacy of Deleuze and Guattari in Education and Learning (Springer, 2023) and Machine Learning in Educational Sciences: Approaches, Applications and Advances (Springer, 2024).