Muutke küpsiste eelistusi

E-raamat: Welding and Joining of Aerospace Materials

Edited by (University of Manitoba, Canada)
  • Formaat - PDF+DRM
  • Hind: 293,48 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Welding and Joining of Aerospace Materials, Second Edition, is an essential reference for engineers and designers in the aerospace, materials, welding and joining industries, as well as companies and other organizations operating in these sectors. This updated edition brings together an international team of experts with updated and new chapters on electron beam welding, friction stir welding, weld-bead cracking, and recent developments in arc welding.

  • Highlights new trends and techniques for aerospace materials and manufacture and repair of their components
  • Covers many joining techniques, including riveting, composite-to-metal bonding, and diffusion bonding
  • Contains updated coverage on recently developed welding techniques for aerospace materials
Contributors ix
1 New welding techniques for aerospace materials
1(20)
Richard Freeman
1.1 Introduction
1(1)
1.2 Airworthiness implications of new welding and joining technologies
1(5)
1.3 Future developments and trends
6(12)
1.4 Review of welding processes
18(1)
References
18(3)
2 Inertia friction welding (IFW) for aerospace applications
21(46)
M.M. Attallah
M. Preuss
2.1 Introduction
21(8)
2.2 Process parameters, heat generation and modeling
29(9)
2.3 Microstructural development
38(9)
2.4 Development of mechanical properties
47(9)
2.5 Residual stress development
56(5)
2.6 Future trends
61(1)
2.7 Source of further information and advice
61(1)
References
61(6)
3 Laser welding of metals for aerospace and other applications
67(28)
J. Blackburn
3.1 Introduction
67(1)
3.2 Operating principles and components of laser sources--An overview
68(3)
3.3 Key characteristics of laser light
71(2)
3.4 Basic phenomena of laser light interaction with metals
73(4)
3.5 Laser welding fundamentals
77(6)
3.6 Laser weldability of titanium alloys
83(6)
3.7 Future trends
89(1)
3.8 Sources of further information and advice
90(1)
References
90(4)
Laser sources
94(1)
Properties of laser light
94(1)
Laser materials processing
94(1)
4 Linear friction welding in aerospace engineering
95(28)
J. Bhamji
A.C. Addison
P.L. Threadgill
M. Preuss
4.1 Introduction to linear friction welding
95(1)
4.2 History and major applications of linear friction welding
95(3)
4.3 Linear friction welding machines
98(6)
4.4 Macroscopic features of and defects in linear friction welds
104(1)
4.5 Microscopic features of linear friction welds
105(1)
4.6 Linear friction welding of titanium alloys
106(9)
4.7 Linear friction welding of nickel-based superalloys
115(1)
4.8 Linear friction welds in other materials
116(2)
4.9 Conclusion
118(1)
References
119(4)
5 Hybrid laser-arc welding in aerospace engineering
123(34)
J. Zhou
T.T. Zhang
H.L. Tsai
P.C. Wang
5.1 Introduction
123(3)
5.2 Fundamentals of hybrid laser-arc welding
126(13)
5.3 Hybrid laser-arc welding of aeronautical materials
139(11)
5.4 Future trends
150(1)
References
150(7)
6 Electron beam welding--Techniques and trends
157(42)
M. St. Weglowski
S. Biacha
A. Phillips
6.1 Introduction
157(3)
6.2 Electron beam welding
160(6)
6.3 Characteristics of the electron beam welding process
166(4)
6.4 Machines for electron beam welding and other processes
170(3)
6.5 Standardization
173(5)
6.6 Other application of electron beam welding
178(9)
6.7 Trends in electron beam welding
187(6)
6.8 Summary
193(1)
References
193(6)
7 Heat-affected zone cracking in nickel-based superalloys and the role of minor elements
199(30)
O.A. Ojo
N.L. Richards
K.R. Vishwakarma
7.1 Introduction
199(1)
7.2 Characteristics of crack-inducing intergranular liquid
199(9)
7.3 Formation of HAZ grain boundary liquid
208(1)
7.4 Constitutional liquation of second phase particles in nickel-based superalloys
208(5)
7.5 Role of minor elements on HAZ intergranular liquation cracking
213(13)
References
226(3)
8 Improvements in bonding metals for aerospace and other applications
229(48)
A. Kwakernaak
J. Hofstede
J. Poidis
R. Benedictus
8.1 Introduction: Key problems in metal bonding
229(1)
8.2 Developments in the range of adhesives for metal
230(9)
8.3 Developments in surface treatment techniques for metal
239(9)
8.4 Developments in joint design
248(13)
8.5 Developments in modeling and testing the effectiveness of adhesive-bonded metal joints
261(7)
8.6 Future trends
268(1)
8.7 Sources of further information and advice
269(1)
References
270(7)
9 Composite to metal bonding in aerospace and other applications
277(28)
R.A. Pethrick
9.1 Introduction
277(2)
9.2 Testing of adhesive bonded structures
279(3)
9.3 Bonding to the metal substrate
282(3)
9.4 Composite pretreatment
285(1)
9.5 Bonding composite to metal
286(1)
9.6 Adhesives
286(5)
9.7 Composite-metal bonded structures
291(8)
9.8 Conclusions
299(1)
Acknowledgments
299(1)
References
299(6)
10 Diffusion bonding of metal alloys in aerospace and other applications
305(24)
Ho-Sung Lee
10.1 Introduction
305(3)
10.2 Diffusion-bonding process
308(18)
10.3 Conclusions and future trends
326(1)
References
326(3)
11 High-temperature brazing in aerospace engineering
329(34)
A. Elrefaey
11.1 Introduction
329(1)
11.2 Filler metals
329(17)
11.3 Trends in brazing at high temperature
346(12)
11.4 Conclusion and future trends
358(2)
References
360(3)
12 Quality control and nondestructive testing of self-piercing riveted joints in aerospace and other applications
363(20)
P. Johnson
12.1 Introduction
363(1)
12.2 Computer vision
364(15)
12.3 Ultrasonic testing
379(1)
12.4 Conclusion
380(1)
References
380(3)
13 Assessing the riveting process and the quality of riveted lap joints in aerospace and other applications
383(44)
Gang Li
Guillaume Renaud
Min Liao
13.1 Introduction
383(1)
13.2 Riveting process and quality assessment of the rivet installation
383(3)
13.3 Determination of residual strains and interference in riveted lap joints
386(2)
13.4 Summary and recommendations for the riveting process research
388(1)
13.5 Case study using the force-controlled riveting method
389(34)
13.6 Concluding remarks and future work
423(1)
Acknowledgments
424(1)
References
424(3)
14 Failure of joints in service
427(10)
Richard Freeman
14.1 Introduction
427(1)
14.2 DeHavilland Comet crashes
428(1)
14.3 General Dynamics F-111 crash
429(1)
14.4 Dan Air Boeing 707 crash
430(1)
14.5 Aloha Airlines Boeing 737 accident
431(2)
14.6 United Airlines DC10 accident
433(1)
14.7 The importance of international standards
434(1)
Reference
435(1)
Further reading
435(2)
Index 437
Mahesh C. Chaturvedi is Professor Emeritus in the Department of Mechanical and Manufacturing Engineering at the University of Manitoba, Canada.