Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 79,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 720 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • Keel: eng
  • ISBN-13: 9781000796100

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Wireless Power Transfer is the second edition of a well received first book, which published in 2012. It represents the state-of-the-art at the time of writing, and addresses a unique subject of great international interest in terms of research. Most of the chapters are contributed by the main author, though as in the first edition several chapters are contributed by other authors. The authors of the various chapters are experts in their own right on the specific topics within wireless energy transfer. Compared to the first edition, this new edition is more comprehensive in terms of the concepts discussed, and the range of current industrial applications which are presented, such as those of magnetic induction. From the eleven chapters of the first edition, this second edition has expanded to twenty chapters. More chapters on the theoretical foundations and applications have been included. This new edition also contains chapters which deal with techniques for reducing power losses in wireless power transfer systems. In this regard, specific chapters discuss impedance matching methods, frequency splitting and how to deploy systems based on frequency splitting. A new chapter on multi-dimensional wireless power transfer has also been added. The design of wireless power transfer systems based on bandpass filtering approach has been included, in addition to the two techniques using couple mode theory and electronic circuits.

The book has retained chapters on how to increase efficiency of power conversion and induction, and also how to control the power systems. Furthermore, detailed techniques for power relay, including applications, which were also discussed in the first edition, have been updated and kept. The book is written in a progressive manner, with a knowledge of the first chapters making it easier to understand the later chapters. Most of the underlying theories covered in the book are clearly relevant to inductive near field communications, robotic control, robotic propulsion techniques, induction heating and cooking and a range of mechatronic systems.
Preface xix
Acknowledgment xxvii
List of Contributors xxix
List of Figures xxxi
List of Tables lv
List of Abbreviations lvii
1 Power Transfer by Magnetic Induction Using Coupled-Mode Theory 1(72)
Mihai Iordache
Lucia Dumitriu
Dragos Niculae
1.1 Introduction
1(2)
1.2 Series-Series Resonators Inductively Coupled
3(11)
1.2.1 Analysis by the Circuit Theory
3(4)
1.2.2 Analysis by the Coupled-Mode Theory
7(3)
1.2.3 Transfer Power Computation
10(1)
1.2.4 Remark
11(3)
1.3 Mutual Inductance Computation
14(12)
1.4 Efficiency of the Active Power Transffer
26(9)
1.4.1 Scattering Parameters S
26(3)
1.4.2 Efficiency Computation
29(6)
1.5 Some Procedures for Optimal Wireless Energy Transfer Systems
35(12)
1.5.1 Indroduction
35(2)
1.5.2 Optimal Parameter Computing Performance Optimization of Magnetic Coupled Resonators
37(10)
1.5.3 Remarks
47(1)
1.6 Conclusions
47(3)
1.7 Problems
50(12)
1.8 Solutions to Problems
62(6)
References
68(5)
2 Efficient Wireless Power Transfer based on Strongly Coupled Magnetic Resonance 73(32)
Fei Zhang
Mingui Sun
2.1 Introduction
73(1)
2.2 Interaction in Lossless Physical System
74(3)
2.3 Interaction in Real Two-Resonator Physical System
77(3)
2.3.1 Fully Resonant Case
77(3)
2.3.1.1 Strong coupling k/square root of GammaSGammaD >> 1
78(2)
2.3.1.2 Weak coupling k/square root of GammaSGammaD ~ 1 or k/square root of GammaSGammaD < 1
80(1)
2.3.2 General Non-Resonant Case
80(1)
2.4 Relay Effect of Wireless Power Transfer
80(3)
2.4.1 Relay Effect
81(1)
2.4.2 Time-Domain Comparison between Relayed and Original Witricity Systems
82(1)
2.5 Wireless Power Transfer with Multiple Resonators
83(7)
2.5.1 General Solution for Multiple Relays
83(1)
2.5.2 Inline Relay(s)
84(3)
2.5.2.1 One relay
84(1)
2.5.2.2 Two relays
85(1)
2.5.2.3 Spectral analysis of energy exchanges
85(2)
2.5.3 Optimization of 2D WPTN Scheme
87(3)
2.5.3.1 Case 1 with two relays
87(1)
2.5.3.2 Case 2 with two relays
87(1)
2.5.3.3 Spectral analysis of energy exchanges
87(3)
2.6 Prototype of Wireless Power Transfer
90(10)
2.6.1 Cylindrical Resonator Design
90(1)
2.6.2 Implementation of Cylindrical Resonator
91(2)
2.6.3 Evaluation of Cylindrical Resonator
93(2)
2.6.4 Application of Cylindrical Resonator
95(5)
2.7 Discussion
100(1)
2.8 Conclusions
101(1)
References
101(4)
3 Low Power Rectenna Systems for Wireless Energy Transfer 105(46)
Vlad Marian
Christian Vollaire
Jacques Verdier
Bruno Allard
3.1 Introduction
105(8)
3.1.1 History of Wireless Power Transfer
106(2)
3.1.2 Wireless Power Transfer Techniques
108(5)
3.1.2.1 DC-RF conversion
110(1)
3.1.2.2 Electromagnetic wave propagation
110(2)
3.1.2.3 RF-DC conversion
112(1)
3.2 Low Power Rectenna Topologies
113(17)
3.2.1 Circuit Topologies
115(5)
3.2.1.1 Series-mounted diode
116(1)
3.2.1.2 Shunt-mounted diode
116(1)
3.2.1.3 Voltage-doubler topology
117(1)
3.2.1.4 Diode bridge topology
117(1)
3.2.1.5 Transistor-based rectennas
118(2)
3.2.2 Rectenna Associations
120(2)
3.2.3 Modeling a Rectenna
122(2)
3.2.4 A Designer's Dilemma
124(6)
3.2.4.1 Output characteristics
124(1)
3.2.4.2 Antenna impedance influence
125(5)
3.3 Reconfigurable Electromagnetic Energy Receiver
130(14)
3.3.1 Typical Application
130(1)
3.3.2 Rectenna Circuit Configuration
131(4)
3.3.3 Reconfigurable Architecture
135(37)
3.3.3.1 Antenna switch
135(1)
3.3.3.2 Global performance
136(5)
3.3.3.3 Output load matching
141(3)
3.4 Conclusions
144(1)
References
144(7)
4 Wireless Power Transfer: Generation, Transmission, and Distribution Circuit Theory of Wireless Power Transfer 151(14)
4.1 Introduction
151(1)
4.2 Criteria for Efficient Resonant Wireless Power Transfer
152(2)
4.2.1 High Power Factor (cos theta = 1)
153(1)
4.2.2 High Coupling Coefficient
153(1)
4.2.3 High Quality (Q >> 1) Factors
153(1)
4.2.4 Matching Circuits
154(1)
4.2.5 Focusing of Magnetic Field
154(1)
4.3 Resonant Wireless Power Transfer
154(5)
4.3.1 Higher-Order WPT Systems
157(2)
4.4 Loosely Coupled Wireless Power Transfer System
159(2)
4.4.1 Low Q1 and Q2
161(1)
4.4.2 High Q1 and Q2
161(1)
4.5 Efficiency
161(2)
4.6 Summary
163(2)
5 Inductive Wireless Power Transfer Using Circuit Theory 165(52)
Kyriaki Fotopoulou
Brian Flynn
5.1 Introduction
165(2)
5.2 Advantages of Inductive Coupling for Energy Transfer
167(1)
5.3 Applications of Inductive Power Transfer
168(4)
5.4 Fundamentals of Inductive Coupling
172(22)
5.4.1 Inductive Coupling and Transformer Action
174(3)
5.4.2 Resonant Circuit Topologies
177(2)
5.4.3 Power Transfer across a Poorly Coupled Link
179(5)
5.4.4 Near-and Far-Field Regions
184(2)
5.4.5 The Importance of the Loop Antenna
186(2)
5.4.6 Small Loop of Constant Current
188(1)
5.4.7 The Loop in Transmitting Mode
189(3)
5.4.8 The Loop in the Receiving Mode
192(2)
5.5 Mutual Inductance of Coupled Coils
194(11)
5.6 The Loosely Coupled Approximation
205(2)
5.7 Summary
207(1)
References
207(10)
6 Recent Advances on Magnetic Resonant Wireless Power Transfer 217(54)
Marco Dionigi
Alessandra Costanzo
Franco Mastri
Mauro Mongiardo
Giuseppina Monti
6.1 Introduction
217(3)
6.2 Coupled Inductors
220(16)
6.2.1 Coupled Inductors
220(5)
6.2.2 The Series Resonant Circuit
225(2)
6.2.3 Adding Resonators to the Coupled Inductors
227(3)
6.2.4 Maximum Efficiency, Maximum Power on the load, and Conjugate Matching: Two-Port Case
230(3)
6.2.5 Maximum Efficiency: N-port Case
233(2)
6.2.6 Scattering Matrix Representation of a Wireless Power Transfer Network
235(1)
6.3 Four Coupled Resonators
236(5)
6.4 Travelling Waves, Power Waves and Conjugate Image Impedances
241(7)
6.4.1 Travelling Waves and Power Waves
242(3)
6.4.2 Conjugate Image Impedances
245(3)
6.5 Measurement of the Resonator Quality Factor
248(4)
6.6 Examples of Coupled Resonators for WPT
252(3)
6.7 Design of the Oscillator Powering the Resonant Link
255(9)
6.8 Conclusions
264(1)
6.9 Exercises
264(2)
6.9.1 MATLAB function for single-loop inductance computation
265(1)
6.9.2 MATLAB function for two coaxial conducting loops mutual inductance computation
265(1)
References
266(5)
7 Techniques for Optimal Wireless Power Transfer Systems 271(36)
7.1 Introduction
272(1)
7.2 Flux Conentrators
273(3)
7.2.1 Splitting of Coupling Coefficients
273(2)
7.2.2 Doubling of Coil Radius
275(1)
7.3 Separators
276(9)
7.3.1 Simulations
279(3)
7.3.2 Effect of Concentrator Quality Factor
282(2)
7.3.3 Effect of Concentrator Radius
284(1)
7.4 Approximate Magneto-Inductive Array Coupling Functions
285(10)
7.4.1 System Specifications
286(1)
7.4.2 Power Relations in Inductive Systems
287(1)
7.4.3 Algorithm for Approximate Transfer Function
288(6)
7.4.4 Interpretation of Algorithm
294(1)
7.4.5 Correction Terms
295(1)
7.5 Wireless Feedback Modelling
295(8)
7.5.1 Wireless Feedback
299(2)
7.5.2 Q-Based Explanation of Wireless Closed-Loop Transfer Function
301(2)
7.6 Conclusions
303(1)
References
303(4)
8 Directional Tuning/Detuning Control of Wireless Power Pickups 307(40)
8.1 Introduction
307(6)
8.1.1 Shorting Control
308(3)
8.1.2 Dynamic Tuning/Detuning Control
311(2)
8.2 Directional Tuning/Detuning Control (DTDC)
313(14)
8.2.1 Fundamentals of DTDC
313(2)
8.2.2 Coarse-Tuning Stage
315(1)
8.2.2.1 Coarse tuning in region A
315(1)
8.2.2.2 Coarse tuning in region B
315(1)
8.2.2.3 Coarse tuning in region C
315(1)
8.2.2.4 Coarse tuning in region D
316(1)
8.2.3 Fine-Tuning Stage
316(4)
8.2.3.1 Fine-tuning between regions A and B
316(2)
8.2.3.2 Fine-tuning between regions C and D
318(2)
8.2.4 Design and Performance Considerations of DTDC
320(5)
8.2.4.1 Category I
323(1)
8.2.4.2 Category II
324(1)
8.2.4.3 Category III
324(1)
8.2.5 Standard Procedure of DTDC
325(2)
8.3 DTDC-Controlled Parallel-Tuned LC Power Pickup
327(16)
8.3.1 Fundamentals of Parallel-Tuned LC Power Pickup
327(1)
8.3.2 Controllable Power Transfer Capacity of Parallel-Tuned LC Power Pickup
328(1)
8.3.3 Effects of Parameter Variations on Output Voltage of Parallel-Tuned LC Power Pickup
329(1)
8.3.4 Operating Frequency Variation
330(1)
8.3.5 Magnetic Coupling Variation
331(2)
8.3.6 Load Variation
333(1)
8.3.7 Operating Range of Variable Cs
333(2)
8.3.7.1 Maximum required ratio (radj_pv _max)
335(1)
8.3.7.2 Minimum required ratio (radi_pv_min)
335(1)
8.3.8 Implementation of DTDC Controlled Parallel-Tuned LC Power Pickup
335(12)
8.3.8.1 Selection of CS1 and CS2
336(1)
8.3.8.2 Equivalent Capacitance of CS2
337(3)
8.3.8.3 Integration of Control and ZVS Signals for Qi and Q2
340(3)
8.4 Conclusions
343(1)
8.5 Problems
343(1)
References
344(3)
9 Technology Overview and Concept of Wireless Charging Systems 347(38)
Pratik Raval
Dariusz Kacprzak
Aiguo Patrick Hu
9.1 Introduction
347(1)
9.2 System Technology
348(13)
9.2.1 Power Converter
349(2)
9.2.2 Compensation Networks
351(5)
9.2.3 Electromagnetic Structures
356(4)
9.2.4 Power Conditioner
360(1)
9.3 Applications
361(2)
9.4 Development of Wireless Low-Power Transfer System
363(17)
9.4.1 Methodology
363(3)
9.4.1.1 Finite element formulation
364(2)
9.4.2 D Planar Wireless Power Transfer System
366(6)
9.4.2.1 Primary track loop
366(2)
9.4.2.2 Pickup
368(4)
9.4.3 Wireless Power Transfer System
372(15)
9.4.3.1 Continuous mode of operation
372(2)
9.4.3.2 Discontinuous mode of operation
374(2)
9.4.3.3 Development
376(4)
9.5 Conclusions
380(1)
9.6 Problems
380(1)
References
381(4)
10 Wireless Power Transfer in On-Line Electric Vehicle 385(36)
10.1 Introduction
385(6)
10.1.1 Wireless Power Transfer Technology
385(2)
10.1.2 Wireless Power Transfer System in the Market
387(4)
10.1.2.1 Application to automobiles
388(3)
10.2 Mechanism of Wireless Power Transfer
391(6)
10.2.1 Electric Field and Magnetic Field
391(2)
10.2.2 Inductive Coupling and Resonant Magnetic Coupling
393(2)
10.2.3 Topology Selection and Coil Design
395(2)
10.3 Design of On-Line Electric Vehicle
397(20)
10.3.1 Necessity of On-Line Electric Vehicle
397(3)
10.3.2 Challenges
400(1)
10.3.3 Topology Analysis
401(1)
10.3.4 Coil Design for Electric Vehicle
402(1)
10.3.5 Electromagnetic Field Reduction Technology
403(8)
10.3.6 Design Procedure and Optimization
411(6)
10.4 Conclusions
417(1)
10.5 Problems
418(1)
References
418(3)
11 Wireless Powering and Propagation of Radio Frequencies through Tissue 421(34)
Eric Y. Chow
Chin-Lung Yang
Pedro P. Irazoqui
11.1 Introduction
421(1)
11.2 Comparison of Transcutaneous Powering Techniques
422(1)
11.3 Analysis
423(10)
11.3.1 Reflections at an Interface
425(2)
11.3.2 Attenuation Due to Tissue Absorption
427(3)
11.3.3 Energy Spreading (Free-Space Path Loss)
430(1)
11.3.4 Expanding to Multiple Layers and Interfaces
430(3)
11.4 Simulation Modeling
433(1)
11.5 Empirical Studies
434(3)
11.6 Antenna Design and Frequency Band Selection
437(3)
11.7 Power Conversion Circuitry
440(5)
11.8 Benefiting Applications and Devices
445(3)
11.9 Conclusions
448(1)
11.10 Problems
449(1)
References
449(6)
12 Microwave Propagation and Inductive Energy Coupling in Biological Human Body Tissue Channels 455(32)
12.1 Introduction
455(3)
12.2 Electromagnetic Wave Propagation in Tissues
458(5)
12.2.1 Wave Reflections in Tissues
462(1)
12.2.2 Matlab Simulations
463(1)
12.3 Applications
463(4)
12.4 Inductive Energy Coupling Systems in Tissues
467(4)
12.5 Bio-Impedance Models of Tissues
471(7)
12.5.1 Skin Model
475(2)
12.5.2 Matlab Simulations
477(1)
12.6 Impact of Tissue Impedance on Inductive Coupling
478(4)
12.7 Circular Coil
482(1)
12.8 Conclusions
483(1)
References
483(4)
13 Critical Coupling and Efficiency Considerations 487(16)
13.1 Introduction
487(1)
13.2 Two-Coil Coupling Systems
488(3)
13.2.1 Strong-Coupling Regime
489(1)
13.2.2 Weak-Coupling Regime
490(1)
13.3 Efficiency and Impedance Matching
491(1)
13.3.1 Efficiency of Peer-to-Peer WPT
491(1)
13.4 Impedance Matching and Maximum Power Transfer Considerations
492(3)
13.4.1 Bi-Conjugate Matching
493(2)
13.5 Reflected Impedance
495(2)
13.5.1 Two-Coil Systems
496(1)
13.5.2 Three-Coil Systems
496(1)
13.5.3 Four-Coil Systems
497(1)
13.6 Relating Reflected Impedance to Impedance Matching
497(4)
13.6.1 Three-Coil Systems
500(1)
References
501(2)
14 Impedance Matching Concepts 503(20)
14.1 Introduction
503(18)
14.1.1 Rationale and Concept
504(4)
14.1.2 Applications of Impedance Matching
508(2)
14.1.3 Transmission-Line Impedance Matching
510(3)
14.1.3.1 Characteristic impedance
510(1)
14.1.3.2 Reflection coefficient
510(2)
14.1.3.3 Standing wave ratio
512(1)
14.1.4 Impedance Matching Circuits and Networks
513(3)
14.1.4.1 Ideal transformer model of WPT
514(1)
14.1.4.2 Ideal transformer model
514(2)
14.1.5 Q-Section Impedance Matching
516(5)
References
521(2)
15 Impedance Matching Circuits 523(20)
15.1 Introduction
523(10)
15.1.1 Series-Parallel Transformations
523(2)
15.1.2 Impedance Matching with L-Sections
525(4)
15.1.2.1 Low-pass sections
525(1)
15.1.2.2 High-pass sections
526(3)
15.1.3 Equivalent Circuits
529(4)
15.2 Impedance Matching Networks
533(9)
15.2.1 pi-Networks
534(3)
15.2.2 T-Networks Design
537(2)
15.2.2.1 LCC design procedure
538(1)
15.2.3 Tunable Impedance Matching Networks
539(1)
15.2.4 Simplified Conjugate Impedance Matching Circuit.
539(4)
15.2.4.1 Impedance matching and maximum power transfer consideration
540(2)
References
542(1)
16 Design, Analysis, and Optimization of Magnetic Resonant Coupling Wireless Power Transfer Systems Using Bandpass Filter Theory 543(44)
Henry Mei
Dohyuk Ha
William J. Chappell
Pedro P. Irazoqui
16.1 Introduction
543(3)
16.2 MRC System Equivalent to BPF
546(10)
16.2.1 Impedance Inverters
546(3)
16.2.2 Two-Stage BPF-Modeled MRC Circuit
549(3)
16.2.3 Realization of K-Inverter Circuit and System Matching Conditions
552(1)
16.2.4 Example BPF-Modeled MRC WPT System Response
553(3)
16.3 BPF Model with Lossy Resonator Optimization
556(8)
16.3.1 Lossy Series Resonant Circuit
556(1)
16.3.2 Determination of S21 Function for Lossy Resonator BPF-Modeled MRC WPT System
557(2)
16.3.3 Determination of Optimal KS1 and K2L Values for Lossy Resonator System
559(2)
16.3.4 Circuit Simulation Results and Effect of Q0n on Maximum Achievable PTE
561(3)
16.4 BPF Model Analysis Using General Coupling Matrix
564(11)
16.4.1 Synthesis of Source and Load Coupling Matrix for BPF-Modeled MRC WPT System
564(3)
16.4.2 Determination of Ms1opt and M2Lopt
567(3)
16.4.3 Examination of MS1opt and M2Lopt on Full S21 Response
570(2)
16.4.4 Examination of MS1opt and M2Lopt on |S21| omega=omega0 Response
572(1)
16.4.5 Investigation of Relationship between k12tgt and k12crit
572(3)
16.5 Experimental Validation
575(6)
16.5.1 Resonator Design and Determination of WPT System Design Parameters
577(2)
16.5.2 Optimum Determined K-inverter Capacitance Values
579(1)
16.5.3 Theoretical versus Measured PTE Response
580(1)
16.6 Summary of General Coupling Matrix Design Procedure
581(2)
16.7 Future Work
583(1)
16.8 Conclusion
583(1)
References
583(4)
17 Multi-Dimensional Wireless Power Transfer Systems 587(38)
Nagi F. Ali Mohamed
Johnson I. Agbinya
17.1 Introduction
587(1)
17.2 Related Work
588(6)
17.3 Network of Multidimensional Coils and Radiation Pattern
594(5)
17.4 Voltage and Current Relation of MDC
599(22)
17.4.1 Configuration 1
601(2)
17.4.2 Configuration 2
603(1)
17.4.3 Configuration 3
604(3)
17.4.4 Configuration 4
607(3)
17.4.5 Configuration 5 (The Simple Coil)
610(1)
17.4.6 Configuration 6
611(2)
17.4.7 Configuration 7
613(3)
17.4.8 Configuration 8
616(5)
17.5 Conclusion
621(1)
References
621(4)
18 Split Frequencies in Magnetic Induction Systems 625(16)
Hoang Nguyen
Johnson I. Agbinya
18.1 Introduction
625(1)
18.2 Single Transmitter-Receiver
626(4)
18.3 Determination of Splitting Frequency
630(4)
18.3.1 Single Transmitter and Multiple Receiver Configuration
630(2)
18.3.2 A Transmitter and Two Receivers (SI2O)
632(2)
18.3.2.1 Without cross-coupling between receivers
632(1)
18.3.2.2 With cross-coupling between receivers
633(1)
18.3.2.3 Determination of the power transfer for SI2O
633(1)
18.4 A Transmitter and Three Receivers (SI3O)
634(1)
18.4.1 Without Cross-Coupling between the Receivers
634(1)
18.4.2 With the Effect of Cross-Coupling between the Receivers
635(1)
18.5 A Transmitter and N Receivers (SIMO)
635(2)
18.5.1 Without Cross-Couplings between the Receivers
635(1)
18.5.2 With the Effect of Cross-Coupling between the Receivers
636(1)
18.5.3 Multiple Transmitter and a Receiver Configuration
636(1)
18.6 Multiple Transmitters and Multiple Receivers (MIMO)
637(2)
18.6.1 Determination of Splitting Frequencies (2Tx-2Rx)
637(1)
18.6.2 Cross-Couplings Are Ignored
638(1)
18.6.3 With Cross-Coupling
638(1)
18.7 Summary
639(1)
References
639(2)
19 Recent Advances in Wireless Powering for Medical Applications 641(40)
Eric Y. Chow
David L. Thompson
Xiyao Xin
19.1 Introduction
641(2)
19.2 Consortiums, Standards, and WPT in the Consumer Market
643(1)
19.3 History of Wireless Powering in Medical Implantable Devices
644(1)
19.4 Development of a Commercial Rechargeable Active Implantable Medical Device
645(5)
19.4.1 Product Design Implications
646(2)
19.4.2 Computational Modeling
648(2)
19.5 Comparison of Commercially Available Rechargeable Active Implantable Devices
650(3)
19.6 Resonance Power Transfer
653(7)
19.7 Far-Field MIMO
660(2)
19.8 Midfield Powering
662(4)
19.9 Acoustic Powering
666(6)
19.10 Conclusions
672(1)
References
672(9)
20 Induction Cooking and Heating 681(22)
20.1 Introduction
681(1)
20.2 Advantages of Induction Cooking
682(1)
20.3 Theory of Induction Heating
682(5)
20.4 Building Blocks of Induction Cooker
687(13)
20.4.1 Rectifiers
688(3)
20.4.1.1 SCR rectifiers
689(1)
20.4.1.2 Half-wave scr rectifier
689(1)
20.4.1.3 Full-wave scr rectifier
690(1)
20.4.2 Inverters
691(6)
20.4.2.1 Fourier series of output voltage
693(1)
20.4.2.2 IGBT inverters
694(1)
20.4.2.2.1 LCL configuration
695(1)
20.4.2.2.2 CCL configuration
696(1)
20.4.3 Half-Bridge Inverter Design
697(3)
References
700(3)
Index 703(4)
Editor's Biography 707
Johnson I. Agbinya