Muutke küpsiste eelistusi

E-raamat: Control and Mechatronics

Edited by (Auburn University, Alabama, USA), Edited by (Auburn University, Alabama, USA)
  • Formaat: 728 pages
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781439802885
  • Formaat - PDF+DRM
  • Hind: 99,83 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 728 pages
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781439802885

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Industrial Electronics Handbook, Second Edition combines traditional and newer, more specialized knowledge that will help industrial electronics engineers develop practical solutions for the design and implementation of high-power applications. Embracing the broad technological scope of the field, this collection explores fundamental areas, including analog and digital circuits, electronics, electromagnetic machines, signal processing, and industrial control and communications systems. It also facilitates the use of intelligent systemssuch as neural networks, fuzzy systems, and evolutionary methodsin terms of a hierarchical structure that makes factory control and supervision more efficient by addressing the needs of all production components.

Enhancing its value, this fully updated collection presents research and global trends as published in the IEEE Transactions on Industrial Electronics Journal, one of the largest and most respected publications in the field. Control and Mechatronics presents concepts of control theory in a way that makes them easily understandable and practically useful for engineers or students working with control system applications. Focusing more on practical applications than on mathematics, this book avoids typical theorems and proofs and instead uses plain language and useful examples to:





Concentrate on control system analysis and design, comparing various techniques Cover estimation, observation, and identification of the objects to be controlledto ensure accurate system models before production Explore the various aspects of robotics and mechatronics

Other volumes in the set:











Fundamentals of Industrial Electronics Power Electronics and Motor Drives Industrial Communication Systems Intelligent Systems
Preface xi
Acknowledgments xiii
Editorial Board xv
Editors xvii
Contributors xxi
PART I Control System Analysis
1 Nonlinear Dynamics
1(1)
Istvan Nagy
Zoltan Suto
1.1 Introduction
1(1)
1.2 Basics
2(3)
Classification
Restrictions
Mathematical Description
1.3 Equilibrium Points
5(4)
Introduction
Basin of Attraction
Linearizing around the EP
Stability
Classification of EPs, Three-Dimensional State Space (N =3)
No-Intersection Theorem
1.4 Limit Cycle
9(3)
Introduction
Poincare Map Function (PMF)
Stability
1.5 Quasi-Periodic and Frequency-Locked State
12(2)
Introduction
Nonlinear Systems with Two Frequencies
Geometrical Interpretation
N-Frequency Quasi-Periodicity
1.6 Dynamical Systems Described by Discrete-Time Variables: Maps
14(7)
Introduction
Fixed Points
Mathematical Approach
Graphical Approach
Study of Logistic Map
Stability of Cycles
1.7 Invariant Manifolds: Homoclinic and Heteroclinic Orbits
21(3)
Introduction
Invariant Manifolds, CTM
Invariant Manifolds, DTM
Homoclinic and Heteroclinic Orbits, CTM
1.8 Transitions to Chaos
24(2)
Introduction
Period-Doubling Bifurcation
Period-Doubling Scenario in General
1.9 Chaotic State
26(1)
Introduction
Lyapunov Exponent
1.10 Examples from Power Electronics
27(14)
Introduction
High-Frequency Time-Sharing Inverter
Dual Channel Resonant DC--DC Converter
Hysteresis Current-Controlled Three-Phase VSC
Space Vector Modulated VSC with Discrete-Time Current Control
Direct Torque Control
Acknowledgments
41(1)
References
41
2 Basic Feedback Concept
2(1)
Tong Heng Lee
Kok Zuea Tang
Kok Kiong Tan
2.1 Basic Feedback Concept
1(9)
Effects of Feedback
Analysis and Design of Feedback
Control Systems
Implementation of Feedback
Control Systems
Application Examples
Bibliography
10
3 Stability Analysis
3(1)
Naresh K. Sinha
3.1 Introduction
1(1)
3.2 States of Equilibrium
2(1)
3.3 Stability of Linear Time-Invariant Systems
3(12)
Routh-Hurwitz Criterion
Relative Stability
Stability under Parameter Uncertainty
Stability from Frequency Response
3.4 Stability of Linear Discrete-Time Systems
15(6)
Routh-Hurwitz Criterion
Jury Stability Test
Nyquist Criterion
3.5 Stability of Nonlinear Systems
21(6)
Linearization
Lyapunov's Method
References
27
4 Frequency-Domain Analysis of Relay Feedback Systems
4(1)
Igor M. Boiko
4.1 Relay Feedback Systems
1(5)
Introduction
Relay Feedback Systems
From Describing Function Analysis to LPRS Analysis
4.2 Locus of a Perturbed Relay System Theory
6(15)
Introduction to the LPRS
Computation of the LPRS from Differential Equations
Computation of the LPRS from Plant Transfer Function
LPRS of Low-Order Dynamics
Some Properties of the LPRS
4.3 Design of Compensating Filters in Relay Feedback Systems
21(3)
Analysis of Performance of Relay Feedback Systems and LPRS Shaping
Compensator Design in the Relay Feedback Systems
Conclusions
References
24
5 Linear Matrix Inequalities in Automatic Control
5(1)
Miguel Bernal
Thierry Marie Guerra
5.1 What Are LMIs?
1(4)
Preliminaries
Some Properties
5.2 What Are LMIs Good For?
5(5)
Model Analysis
Controller Design
References
10
6 Motion Control Issues
6(1)
Roberto Oboe
Makoto Iwasaki
Toshiyuki Murakami
Seta Bogosyan
6.1 Introduction
1(1)
6.2 High-Accuracy Motion Control
2(8)
Feedback Control System
Feedforward Control System and Command Shaping
System Modeling and Identification
Optimization and Auto-Tuning of Motion Control System
6.3 Motion Control and Interaction with the Environment
10(2)
6.4 Remote Motion Control
12(1)
6.5 Conclusions
13(1)
References
14
7 New Methodology for Chatter Stability Analysis in Simultaneous Machining
7(1)
Nejat Olgac
Rifat Sipahi
7.1 Introduction and a Review of Single Tool Chatter
1(4)
Regenerative Chatter and Its Impacts on Machining
Basics of Single-Tool Machining
Single-Tool Machining and Stability
7.2 Regenerative Chatter in Simultaneous Machining
5(2)
Simultaneous Machining and Multiple Delays
Stability of Simultaneous Machining
7.3 CTCR Methodology
7(3)
Characteristics of Multiple-Dimensional Stability Maps
7.4 Example Case Studies
10(8)
Case Study 1 Application of CTCR for Single-Tool Machining
Case Study 2 Deployment of CTCR on Variable-Pitch Milling Cutters
Case Study 3 Six-Flute Milling Cutter Design
7.5 Optimization of the Process Optimization Problem
18(2)
7.6 Conclusion
20(1)
Acknowledgments
20(1)
References
21
PART II Control System Design
8 Internal Model Control
8(1)
James C. Hung
8.1 Basic IMC Structures
1(2)
8.2 IMC Design
3(1)
8.3 Discussion
3(1)
References
3(6)
9 Dynamic Matrix Control
9(1)
James C. Hung
9.1 Dynamic Matrix
1(1)
9.2 Output Projection
2(1)
9.3 Control Computation
2(1)
9.4 Remarks
3(1)
References
3(7)
10 PID Control
10(1)
James C. Hung
Joel David Hewlett
10.1 Introduction
1(1)
10.2 Pole Placement
2(1)
10.3 Ziegler-Nichols Techniques
3(4)
First Technique
Second Technique
10.4 Remarks
7(1)
References
8(3)
11 Nyquist Criterion
11(1)
James R. Rowland
11.1 Introduction and Criterion Examples
1(3)
11.2 Phase Margin and Gain Margin
4(1)
11.3 Digital Control Applications
5(2)
11.4 Comparisons with Root Locus
7(1)
11.5 Summary
8(1)
References
8(4)
12 Root Locus Method
12(1)
Robert J. Veillette
J. Alexis De Abreu Garcia
12.1 Motivation and Background
12
12.2 Root Locus Analysis
2(8)
Problem Definition
Development of Rules for Constructing Root Locus
Steps for Sketching the Root Locus
12.3 Compensator Design by Root Locus Method
10(4)
Effect of Including Additional Poles in the Open-Loop Transfer Function
Effect of Including Additional Zeros in the Open-Loop Transfer Function
Effect of a Lead Compensator
Lead Compensator Design
12.4 Examples
14(7)
Compensation of an Inertial System
PID Compensation of an Oscillatory System
12.5 Conclusion
21(1)
References
22
13 Variable Structure Control Techniques
13(1)
Asif Sabanovic
Nadira Sabanovic-Behlilovic
13.1 Sliding Mode in Continuous-Time Systems
2(3)
Equivalent Control and Equations of Motion
Existence and Stability of Sliding Modes
13.2 Design
5(5)
Control in Linear System
Discrete-Time SMC
Sliding Mode-Based Observers
13.3 Some Applications of VSS
10(14)
Control in Power Converters
SMC in Electrical Drives
Sliding Modes in Motion Control Systems
13.4 Conclusion
24(1)
References
24
14 Digital Control
14(1)
Timothy N. Chang
John Y. Hung
14.1 Introduction
1(1)
14.2 Discretization of Continuous-Time Plant
2(2)
14.3 Discretization of Continuous-Time System with Delay
4(2)
14.4 Digital Control Design
6(8)
Digital PID Design
Input Shaping Design
State Feedback Design
14.5 Multirate Controllers
14(1)
14.6 Conclusions
15(1)
References
15(1)
15 Phase-Lock-Loop-Based Control
15(1)
Guan-Chyun Hsieh
15.1 Introduction
1(2)
15.2 Basic Concept of PLL
3(6)
Phase Detector
Voltage-Controlled Oscillator
Loop Filter and Other Subsystems
15.3 Applications of PLL-Based Control
9(2)
Phase-Locked Servo System
Power Electronics
Active Power Filters
Power Quality
Lighting
Battery Charger
15.4 Analog, Digital, and Hybrid PLLs
11(1)
References
11(5)
16 Optimal Control
16(1)
Victor M. Becerra
16.1 Introduction
1(1)
Optimal Control
Origins
Applications of Optimal Control
16.2 Formulation of Optimal Control Problems
2(1)
16.3 Continuous-Time Optimal Control Using the Variational Approach
2(11)
Preliminaries
Case with Fixed Initial and Final Times and No Terminal or Path Constraints
Case with Terminal Constraints
Example: Minimum Energy Point-to-Point Control of a Double Integrator
Case with Input Constraints: Minimum Principle
Minimum Time Problems
Problems with Path- or Interior-Point Constraints
Singular Arcs
The Linear Quadratic Regulator
16.4 Discrete-Time Optimal Control
13(1)
16.5 Dynamic Programming
14(1)
16.6 Computational Optimal Control
14(1)
16.7 Examples
15(5)
Obstacle Avoidance Problem
Missile Terminal Burn Maneuver
References
20
17 Time-Delay Systems
17(1)
Emilia Fridman
17.1 Models with Time-Delay
1(1)
17.2 Solution Concept and the Step Method
2(1)
17.3 Linear Time-Invariant Systems and Characteristic Equation
3(1)
17.4 General TDS and the Direct Lyapunov Method
4(2)
17.5 LMI Approach to the Stability of TDS
6(8)
Delay-Independent Conditions
Delay-Dependent Conditions
Exponential Bounds and L2-Gain Analysis
17.6 Control Design for TDS
14(1)
Predictor-Based Design
LMI-Based Design
17.7 On Discrete-Time TDS
15(2)
References
17(1)
18 AC Servo Systems
18(1)
Yong Feng
Liuping Wang
Xinghuo Yu
18.1 Introduction
1(1)
18.2 Control System of PMSM
1(6)
System Structure
Model of PSMS
PID Control of PSMS
High-Order TSM Control of PMSM
Simulations
18.3 Observer for Rotor Position and Speed of PMSMs
7(3)
Conventional Sliding-Mode Observer
Hybrid TSM Observer
18.4 Control of Induction Motors
10(5)
Scalar Control
Direct Torque Control
Field-Oriented Control
18.5 Conclusions
15(1)
References
15(4)
19 Predictive Repetitive Control with Constraints
19(1)
Liuping Wang
Shan Chai
Eric Rogers
19.1 Introduction
1(1)
19.2 Frequency Decomposition of Reference Signal
2(1)
19.3 Augmented Design Model
3(2)
19.4 Discrete-Time Predictive Repetitive Control
5(2)
19.5 Application to a Gantry Robot Model
7(3)
Process Description
Frequency Decomposition of the Reference Signal
Closed-Loop Simulation Results
19.6 Conclusions
10(1)
References
10(10)
20 Backstepping Control
20(1)
Jing Zhou
Changyun Wen
20.1 Introduction
1(1)
20.2 Backstepping
1(3)
20.3 Adaptive Backstepping
4(3)
20.4 Adaptive Backstepping with Tuning Functions
7(2)
20.5 State Feedback Control
9(2)
20.6 Backstepping Control of Unstable Oil Wells
11(10)
Unstable Multiphase Flow
Dynamic Model
Backstepping Control Design
Simulation Results
References
21(1)
21 Sensors
21(1)
Tiantian Xie
Bogdan M. Wilamowski
21.1 Introduction
1(1)
21.2 Distance and Displacement Sensors
1(4)
Sensors for Large Distances
Sensors for Medium Distances
Sensors for Small Distances
21.3 Pressure Sensors
5(2)
Piezoresistive Pressure Sensors
Capacitive Pressure Sensors
Piezoelectric Pressure Sensors
21.4 Accelerometer
7(2)
Piezoelectric Accelerometer
Piezoresistive Accelerometer
Capacitance Accelerometer
21.5 Temperature Sensors
9(1)
Thermistor
Thermocouple
IC Temperature Sensors
21.6 Radiation Sensors
10(4)
Bolometer
Photon Detectors
Photoresistor
Photodiode hotomultiplier
21.7 Magnetic Field Sensors
14(2)
Induction Coil Sensors
Hall Effect Sensors
Fluxgate Sensors
Magnetoresistive Sensors
21.8 Sensorless Control System
16(1)
References
17(5)
22 Soft Computing Methodologies in Sliding Mode Control
22(1)
Xinghuo Yu
Okyay Kaynak
22.1 Introduction
1(1)
22.2 Key Technical Issues in SMC
2(3)
Fundamentals of SMC and Its Design Methods
Key Technical Issues in SMC and Applications
22.3 Key SC Methodologies
5(2)
Neural Networks
Fuzzy Systems
Evolutionary Computation
Integration of SC Methodologies
22.4 Sliding Mode Control with SC Methodologies
7(3)
SMC with NNs
SMC with FL
SMC with Integrated NN, FL, and EC
22.5 Conclusions
10(1)
References
10(13)
PART III Estimation, Observation, and Identification
23 Adaptive Estimation
23(1)
Seta Bogosyan
Metin Gokasan
Fuat Gurleyen
23.1 Introduction
1(2)
23.2 Adaptive Parameter Estimation Schemes
3(9)
Least-Squares Estimation
23.3 Model Reference Adaptive Schemes
12(3)
MRAS with Full-State Measurements
Generalized Error Models in Estimation with Full-State Measurements
Generalized Error Models in Estimation with Partial-State Measurements
23.4 Lyapunov-Based Adaptive Parameter Estimation for Nonlinear Systems
15(6)
Standard Parameterization Approach
New Parameterization Approach
23.5 Adaptive Observers
21(9)
Luenberger Observer
Adaptive Estimation in Deterministic Nonlinear Systems Using the Extended Luenberger Observer
Adaptive Estimation in Stochastic Nonlinear Systems Using the Extended Kalman Filter
23.6 Experimental Results
30(3)
References
33
24 Observers in Dynamic Engineering Systems
24(1)
Christopher Edwards
Chee Pin Tan
24.1 Introduction
1(2)
24.2 Linear Observers Observability
3(3)
24.3 Reduced-Order Observers
6(2)
24.4 Noise and Design Tradeoffs
8(1)
24.5 Kalman--Bucy Filtering
9(1)
24.6 Nonlinear Observers: Thau Observer
10(2)
24.7 High-Gain Observers
12(2)
24.8 Sliding-Mode Observers
14(3)
24.9 Applications
17(4)
State-Feedback Control
Fault Detection and Isolation
24.10 Conclusions
21(1)
24.11 Further Reading
21(1)
References
22(3)
25 Disturbance Observation--Cancellation Technique
25(1)
Kouhei Ohnishi
25.1 Why Estimate Disturbance?
1(1)
25.2 Plant and Disturbance
1(4)
25.3 Higher-Order Disturbance Approximation
5(1)
25.4 Disturbance Observation
5(1)
25.5 Disturbance Cancellation
6(1)
25.6 Examples of Application
6(2)
25.7 Conclusions
8(1)
Bibliography
9(17)
26 Ultrasonic Sensors
26(1)
Lindsay Kleeman
26.1 Overview
1(1)
26.2 Speed of Sound
2(1)
26.3 Attenuation of Ultrasound due to Propagation
3(1)
26.4 Target Scattering and Reflection
4(2)
Reflections from a Plane
Reflections from a Concave Right-Angled Corner
Diffraction from Edges
26.5 Beamwidth-Round Piston Model
6(1)
26.6 Transducers
7(1)
26.7 Polaroid Ranging Module
7(1)
26.8 Estimating the Echo Arrival Time
8(1)
Thresholding
Curve Fitting to the Envelope
Matched Filtering
26.9 Estimating the Bearing to Targets
8(1)
26.10 Specular Target Classification
9(1)
26.11 Ultrasonic Beam-Forming Arrays
10(1)
26.12 Advanced Sonar Sensing
11(1)
26.13 Sonar Rings
12(2)
Simple Ranging Module Rings
Advanced Rings
DSP Sonar Ring
Single Transmitter Ring Horn
26.14 Conclusion
14(1)
References
14(13)
27 Robust Exact Observation and Identification via High-Order Sliding Modes
27(1)
Leonid Fridman
Arie Levant
Jorge Angel Davila Montoya
27.1 Introduction
1(7)
Arbitrary-Order Robust Exact Differentiators
27.2 High-Order Sliding-Modes State Observation
8(9)
Single Output-Single Unknown Input Case
Multiple Outputs-Multiple Unknown Inputs Case
Example
27.3 System Identification Example
17(8)
27.4 Bibliography Review
25(1)
References
26(2)
PART IV Modeling and Control
28 Modeling for System Control
28(1)
A. John Boye
28.1 Introduction
1(1)
28.2 Analytical Modeling
2(3)
Determine the Model Structure
Determine the System Components
Determine the System Equations
Determine the Model Accuracy
28.3 Empirical or Experimental Modeling
5(1)
28.4 Examples
6(6)
Example 1
Example 2
28.5 Conclusion
12(1)
References
12(17)
29 Intelligent Mechatronics and Robotics
29(1)
Satoshi Suzuki
Fumio Harashima
29.1 Introduction
1(1)
29.2 System Structure of Intelligent Mechatronics
1(1)
29.3 Network Intelligent Mechatronics
2(2)
29.4 Cognitive Intelligent Mechatronics
4(3)
29.5 Communicative Intelligent Mechatronics
7(2)
29.6 Biological Intelligent Mechatronics
9(1)
29.7 Human-Assistive Intelligent Mechatronics
9(1)
29.8 Conclusion and Epilogue
10(1)
Acknowledgments
10(1)
References
10(20)
30 State-Space Approach to Simulating Dynamic Systems in SPICE
30(1)
Joel David Hewlett
Bogdan M. Wilamowski
30.1 Introduction
1(1)
30.2 Building Blocks
1(4)
Integrator
Differentiator
User-Defined Expressions
Parameter Definitions
Stimuli
Initial Conditions
Simulation
30.3 Examples
5(8)
Mass-Spring-Damper System
Lorenz Attractor
Inverted Pendulum
State-Feedback Control
30.4 Conclusion
13(1)
References
13(18)
31 Iterative Learning Control for Torque Ripple Minimization of Switched Reluctance Motor Drive
31(1)
Sanjib Kumar Sahoo
Sanjib Kumar Panda
Jian-Xin Xu
31.1 Introduction
1(1)
31.2 Operating Principle of SRM Trapezoidal Phase Inductance Profile
2(3)
31.3 Electronic Phase Commutation Nonlinearity of SRM Magnetization Characteristics
5(1)
31.4 Direct Torque Control of SRM
6(2)
31.5 Proposed Spatial ILC-Based Controller
8(4)
Iterative Learning Controller
Phase Torque Periodic in Rotor Position
Implementation of the Spatial ILC Scheme
ILC Convergence
Performance of the Controller at High Speed
31.6 Experimental Results
12(1)
31.7 Conclusions
13(1)
References
13(19)
32 Precise Position Control of Piezo Actuator
32(1)
Jian-Xin Xu
Sanjib Kumar Panda
32.1 Piezo Actuator
1(2)
Structure and Working Principle of LUSM
Control Voltage-Velocity Characteristics of the Motor
32.2 Deadzone Compensation and Proportional-Integral Control
3(3)
32.3 Sliding Mode Controller
6(3)
32.4 Repetitive Learning Controller
9(1)
32.5 Conclusions
10(1)
References
11(22)
33 Hardware-in-the-Loop Simulation
33(1)
Alain Bouscayrol
33.1 Introduction
1(1)
33.2 Software Simulation and Hardware-in-the-Loop Simulation
2(2)
Control Design of an Energy Conversion System
Software Simulation
Hardware-in-the-Loop Simulation
33.3 Signal and Power HIL Simulations
4(5)
Signal HIL Simulation
Power HIL Simulation
Reduced-Scale Power HIL Simulation
33.4 Example of the Traction of an EV
9(5)
Studied System
Signal HIL Simulation of the Studied System
Electrical Power HIL Simulation of the Studied System
Mechanical Power HIL Simulation of the Studied System
Reduced-Scale Mechanical Power HIL Simulation of the Studied System
33.5 Conclusion
14(1)
References
14(20)
PART V Mechatronics and Robotics
34 Introduction to Mechatronic Systems
34(1)
Ren C. Luo
Chin F. Lin
34.1 What is Mechatronics?
1(3)
Historical Development of Mechatronic Systems
Components and Functions
34.2 Interdisciplinary Fields of Mechatronics
4(12)
Mechanical Engineering
Electrical and Electronic Engineering
Information Technology
Intelligent Control and Machine Automation
34.3 Design Procedures
16(4)
Bio-Inspired Concepts for Mechatronic System Design
Machinery Design Progress
From Design to Realization
System Integration Aspects
CAD Tools for Design
Mathematical Models and Systematical Simultaneous
34.4 Applications
20(13)
Automatic Control and Robotics
Biomedical Engineering
Mechatronic Products
Micro-Nano Mechatronic Systems
Automotive Mechatronics
34.5 Conclusions
33(1)
References
33(2)
35 Actuators in Robotics and Automation Systems
35(1)
Choon-Seng Yee
Marcelo H. Ang Jr.
35.1 Overview
1(2)
35.2 Direct Current Motors
3(5)
Principle of Operation
Brushed Motor Drives
Brushless DC Motor Drive
DC Motor Performance and Characteristics
35.3 Stepper Motors
8(3)
Principle of Operation
Stepper Motor Driver
Stepper Motor Performance and Characteristics
35.4 RC Servo Motors
11(3)
35.5 Intelligent Motors
14(2)
Principles of Operation
35.6 Electroactive Polymer Actuators
16(2)
35.7 Transmissions
18(5)
Belts, Cables, and Chains
Gear Trains
References
23(13)
36 Robot Qualities
36(1)
Raymond Jarvis
37 Robot Vision
37(1)
Raymond Jarvis
38 Robot Path Planning
38(1)
Raymond Jarvis
A Search Path Planning
Rapidly Exploring Random Trees
Distance Transform Path Planning
Comparisons: Complexity, Flexibility, and Application Scope
References
39 Mobile Robots
39
Miguel A. Salichs
Ramon Barber
Maria Malfaz
39.1 Introduction
1(1)
39.2 Locomotion Kinematics
1(3)
39.3 Perception
4(1)
Rangefinder Sensors
Vision Sensors
39.4 Control Architectures
5(2)
39.5 Localization and Mapping
7(3)
Uncertainty
Environment Representations
Localization
Simultaneous Localization and Mapping
39.6 Trajectory Planning
10(2)
Planners Based on Graphs
Planners Based on Occupancy Maps
39.7 Conclusions
12(1)
References
12
Bodgan Wilamowski, J. David Irwin