Muutke küpsiste eelistusi

E-raamat: Epitaxial Growth of Complex Metal Oxides

Edited by (Professor, MESA+ Institute for Nanotec), Edited by (Professor, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.), Edited by (Professor, MESA+ Institute for Nanotechnology,University of Twente, Enschede, The Netherlands)
  • Formaat - PDF+DRM
  • Hind: 334,43 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications.

This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites.

  • Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques
  • Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry
  • Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications
List of contributors
xi
Preface xv
Part One
1(156)
1 Growth studies of heteroepitaxial oxide thin films using reflection high-energy electron diffraction
3(34)
Gertjan Koster
Yorick Birkhblzer
Mark Huijben
Guus Rijnders
Matjaz Spreitzer
Lior Kornblum
Sander Smink
1 Introduction: RHEED and pulsed laser deposition
3(1)
2 Basic principles of RHEED
3(1)
3 Variations of the specular intensity during deposition
4(2)
4 RHEED intensity variations during heteroepitaxy: examples
6(12)
5 Other templates
18(9)
6 Postdeposition RHEED
27(4)
7 Conclusions
31(6)
Acknowledgments
31(1)
References
32(3)
Further Reading
35(2)
2 Sputtering techniques for epitaxial growth of complex oxides
37(16)
M. Dawber
1 Introduction
37(1)
2 General considerations for sputtering of complex oxides
37(5)
3 A practical guide to the sputtered growth of perovskite titanate ferroelectrics
42(7)
4 Conclusions
49(4)
References
50(3)
3 Hybrid oxide molecular beam epitaxy
53(22)
Adam P. Kajdos
Nicholas G. Combs
Susanne Stemmer
1 Introduction
53(3)
2 Metal-organic precursors for oxide HMBE
56(2)
3 Deposition kinetics of binary oxides from MO precursors
58(4)
4 Opening a growth window with MO precursors
62(3)
5 Properties of materials grown by hybrid oxide MBE
65(3)
6 Limitations of HMBE and future developments
68(7)
Acknowledgments
69(1)
References
69(6)
4 Chemical solution deposition of oxide thin films
75(26)
Johan E. Ten Elshof
1 Introduction
75(2)
2 Reagents and solvents
77(2)
3 Types of CSD processes
79(4)
4 Film and pattern formation
83(5)
5 Crystallization, densification, and epitaxy
88(5)
6 Examples of CSD-derived oxide films
93(3)
7 Conclusions
96(5)
References
97(4)
5 Epitaxial growth of superconducting oxides
101(36)
Hideki Yamamoto
Yoshiharu Krockenberger
Michio Naito
1 Introduction
101(1)
2 Overview of epitaxial growth of superconducting oxides
102(1)
3 Requirements for growth of high-quality complex metal-oxide films by molecular-beam epitaxy
103(3)
4 Case studies
106(17)
5 Synthesis of new superconductors by thin-film growth methods
123(3)
6 Conclusions and future trends
126(1)
7 Sources of further information and advice
126(11)
Acknowledgments
127(1)
References
127(10)
6 Interface-induced effects on the polarization response of epitaxial ferroelectric thin films---an experimental study and theoretical analysis
137(20)
Evert P. Houwman
Luuk Okkerman
Minh T. Do
Gertjan Koster
Guus Rijnders
1 Introduction
137(2)
2 Model interface structure and sample description
139(1)
3 Effects of SRO/PZT interface on ferroelectric properties
140(12)
4 Discussion and conclusions
152(5)
References
153(4)
Part Two
157(242)
7 Strain engineering during epitaxial growth of oxides
159(40)
Arturas Vailionis
1 Introduction
159(1)
2 Crystal structures of perovskites and related oxides
160(4)
3 Lattice mismatch-induced stress accommodation in oxide thin films
164(20)
4 Effect of misfit strain-induced distortions on transport and magnetic properties
184(8)
5 Conclusions and future directions
192(7)
References
193(6)
8 Defects in oxide crystals: nanoscale and interfacial effects
199(32)
Carlos Leon
Jacobo Santamaria
1 Introduction
199(1)
2 Ion transport in oxide crystals: yttria stabilized zirconia and oxide pyrochlores
200(7)
3 Space charge effects at grain boundaries
207(4)
4 Effects of epitaxial strain on ion transport at oxide interfaces
211(4)
5 Novel functionalities of oxygen vacancies in ferroelectric tunnel junctions
215(16)
References
221(10)
9 Interfaces
231(36)
Zhaoliang Liao
Guanglei Cheng
LingFei Wang
Yanwei Cao
1 Introduction
231(1)
2 Introduction to oxide interface
232(2)
3 Interface engineering knobs
234(14)
4 Manipulation of interface states
248(10)
5 Conclusions and perspectives
258(9)
References
259(8)
10 Stoichiometry in epitaxial oxide thin films
267(32)
Regina Dittmann
Alessia Sambri
1 Introduction
267(1)
2 General aspects of stoichiometry transfer in physical vapor deposition techniques
268(1)
3 Cation stoichiometry transfer during PLD growth
269(9)
4 Adjustment of the oxygen stoichiometry during PLD growth
278(3)
5 Accommodation of nonstoichiometry in oxide thin films
281(5)
6 Impact of nonstoichiometry on oxide thin film properties
286(4)
7 Future trends
290(1)
8 Sources of further information
291(8)
Acknowledgments
292(1)
References
292(7)
11 In situ X-ray scattering of epitaxial oxide thin films
299(32)
H. Zhou
D.D. Fong
1 X-ray toolkits for probing surface/interface: an expanding list
299(9)
2 Watching surface/interface evolution for epitaxial oxide synthesis
308(5)
3 Interrogating emergent properties at oxide interfaces
313(7)
4 Probing functional epitaxial oxide heterostructures for energy harvesting
320(3)
5 Future perspectives
323(8)
Acknowledgments
324(1)
References
325(6)
12 Scanning probe microscopy of epitaxial oxide thin films
331(38)
Hangwen Guo
Jiandi Zhang
1 Introduction
331(1)
2 Basic principles of scanning probe microscopy
332(4)
3 Scanning probe microscopy studies of CMR manganite thin films
336(13)
4 Scanning probe microscopy study on ferroelectric and multiferroic thin films
349(8)
5 Cross-sectional scanning tunneling microscopy, spectroscopy, and electrochemical strain microscopy
357(1)
6 Projective views on microscopic characterization of epitaxial oxide films
358(11)
Acknowledgments
358(1)
References
358(11)
13 High-resolution transmission electron microscopy and spectroscopy of epitaxial metal oxides
369(30)
Hongchu Du
Chun-Lin Jia
1 Introduction
369(1)
2 Transmission electron microscopies and spectroscopies
370(6)
3 Application of quantitative HRTEM based on NCSI
376(7)
4 Application of quantitative STEM and spectroscopy
383(12)
5 Conclusions
395(4)
Acknowledgments
395(1)
References
396(3)
Part Three
399(104)
14 Optical properties and characterization of oxide thin films and heterostructures
401(48)
Woo Seok Choi
Ambrose Seo
Changhee Sohn
Ho Nyung Lee
1 Introduction
401(1)
2 Fundamentals of optical spectroscopy
401(6)
3 Optical band gap engineering of oxide heterostructures
407(4)
4 Optical probing of correlated electronic behaviors
411(12)
5 Evolution of electronic structure in low-dimensional oxides
423(12)
6 Spectroscopic understanding of electrochemical behaviors
435(3)
7 Operando spectroscopic characterization
438(6)
8 Summary and outlook
444(5)
References
445(4)
15 High-performance electrostrictor oxide thin films
449(20)
Simone Santucci
Haiwu Zhang
Nini Pryds
Vincenzo Esposito
1 Introduction into classical electrostriction
449(4)
2 Applications
453(1)
3 Nonclassical electrostriction
453(4)
4 Gd-doped ceria thin films
457(6)
5 Conclusions and future perspective
463(6)
References
465(4)
16 Spintronics: an application of complex metal oxides
469(34)
M. Bowen
1 Introduction: present stakes for spintronics
469(1)
2 Magnetic interactions in complex metal oxides
470(2)
3 Spintronic techniques
472(5)
4 Complex oxide electrodes for spintronics
477(7)
5 Spacers with intrinsic functionality
484(6)
6 Spintronic opportunities at oxide heterointerfaces
490(1)
7 Conclusions and perspectives
491(12)
Acknowledgments
492(1)
References
493(10)
Index 503
Gertjan Koster is a Professor at the University of Twente in the Netherlands. He is also a visiting professor at the Joseph Stephan Institute in Slovenia. His current research focuses on the growth and study of artificial materials, the physics of reduced scale (nanoscale) materials, metalinsulator transitions, and in situ spectroscopic characterization. Mark Huijben is a Professor at the University of Twente in the Netherlands. He is also a Guest Scientist of the IEK-1 Electrochemical Storage Department at Forschungszentrum Jülich in Germany. His research currently focuses on nanostructured thin films for advanced energy conversion and storage. Guus Rijnders is a Professor and Chairman of Inorganic Materials Science, University of Twente, Enschede, Netherlands. His research currently focuses on the integration of functional and smart materials with electronic and microelectromechanical systems (MEMS).