Muutke küpsiste eelistusi

E-raamat: Epitaxial Growth of Complex Metal Oxides

Edited by (Professor, MESA+ Institute for Nanotechnology,University of Twente, Enschede, The Netherlands), Edited by (Professor, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.), Edited by (Professor, MESA+ Institute for Nanotec)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 259,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials.Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes.

Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three.

  • Provides valuable information on the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and further advances in applications for electronic and optical purposes
  • Examines the techniques used in epitaxial thin film growth
  • Describes the epitaxial growth and functional properties of complex metal oxides and explores the effects of strain and defects

Muu info

Ideal for those interested in the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and the further advances and applications they have created for electronic and optical purposes
List of contributors
xi
Woodhead Publishing Series in Electronic and Optical Materials xiii
Part One Epitaxial growth of complex metal oxides
1(172)
1 Growth studies of heteroepitaxial oxide thin films using reflection high-energy electron diffraction (RHEED)
3(28)
G. Koster
M. Huijben
A. Janssen
G. Rijnders
1.1 Introduction: reflection high-energy electron diffraction and pulsed laser deposition
3(1)
1.2 Basic principles of RHEED
3(1)
1.3 Variations of the specular intensity during deposition
4(2)
1.4 RHEED intensity variations during heteroepitaxy: examples
6(20)
1.5 Conclusions
26(5)
Acknowledgments
27(1)
References
27(4)
2 Sputtering techniques for epitaxial growth of complex oxides
31(16)
M. Dawber
2.1 Introduction
31(1)
2.2 General considerations for sputtering of complex oxides
31(5)
2.3 A practical guide to the sputtered growth of perovskite titanate ferroelectrics
36(7)
2.4 Conclusions
43(4)
References
44(3)
3 Hybrid molecular beam epitaxy for the growth of complex oxide materials
47(22)
A.P. Kajdos
S. Stemmer
3.1 Introduction
47(3)
3.2 Metal-organic precursors for oxide hybrid molecular beam epitaxy (HMBE)
50(2)
3.3 Deposition kinetics of binary oxides from metal-organic (MO) precursors
52(5)
3.4 Opening a growth window with MO precursors
57(3)
3.5 Properties of materials grown by hybrid oxide molecular beam epitaxy (MBE)
60(3)
3.6 Limitations of HMBE and future developments
63(6)
Acknowledgments
63(1)
References
64(5)
4 Chemical solution deposition techniques for epitaxial growth of complex oxides
69(26)
J.E. ten Elshof
4.1 Introduction
69(2)
4.2 Reagents and solvents
71(2)
4.3 Types of chemical solution deposition (CSD) processes
73(4)
4.4 Film and pattern formation
77(5)
4.5 Crystallization, densification and epitaxy
82(4)
4.6 Examples of CSD-derived oxide films
86(4)
4.7 Conclusions
90(5)
References
90(5)
5 Epitaxial growth of superconducting oxides
95(34)
H. Yamamoto
Y. Krockenberger
M. Naito
5.1 Introduction
95(1)
5.2 Overview of epitaxial growth of superconducting oxides
96(2)
5.3 Requirements for growth of high-quality complex metal-oxide films by molecular-beam epitaxy (MBE)
98(2)
5.4 Case studies
100(16)
5.5 Synthesis of new superconductors by thin-film growth methods
116(3)
5.6 Conclusions and future trends
119(1)
5.7 Sources of further information and advice
119(10)
Acknowledgments
120(1)
References
120(9)
6 Epitaxial growth of magnetic-oxide thin films
129(44)
J.A. Moyer
R.V.K. Mangalam
L.W. Martin
6.1 Introduction
129(1)
6.2 Magnetism and major magnetic-oxide systems
129(8)
6.3 The effects of thin-film epitaxy on magnetism
137(15)
6.4 Characterization of magnetic-oxide thin films
152(2)
6.5 Applications of epitaxial magnetic-oxide thin films
154(4)
6.6 Future of epitaxy of complex-oxide magnets
158(15)
Acknowledgments
159(1)
References
159(14)
Part Two Properties and analytical techniques
173(156)
7 The effects of strain on crystal structure and properties during epitaxial growth of oxides
175(34)
A. Vailionis
7.1 Introduction
175(1)
7.2 Crystal structures of perovskites and related oxides
176(3)
7.3 Lattice mismatch-induced stress accommodation in oxide thin films
179(16)
7.4 Effect of misfit strain-induced distortions on transport and magnetic properties
195(8)
7.5 Conclusions and future directions
203(6)
References
203(6)
8 Defects, impurities, and transport phenomenon in oxide crystals
209(22)
C. Leon
J. Santamaria
8.1 Introduction
209(1)
8.2 Oxygen ion transport in yttria-stabilized zirconia (YSZ)
210(4)
8.3 Structural disorder and transport in defect oxide pyrochlores
214(4)
8.4 Space charge effects at grain boundaries
218(2)
8.5 Effects of epitaxial strain on ion transport at oxide interfaces
220(11)
References
224(7)
9 Stoichiometry in epitaxial oxide thin films
231(32)
R. Dittmann
9.1 Introduction
231(1)
9.2 General aspects of stoichiometry transfer in physical vapor deposition techniques
232(1)
9.3 Cation stoichiometry transfer during pulsed laser deposition (PLD) growth
233(7)
9.4 Adjustment of oxygen stoichiometry during PLD growth
240(3)
9.5 Accommodation of nonstoichiometry in oxide thin films
243(4)
9.6 Impact of nonstoichiometry on oxide thin-film properties
247(4)
9.7 Future trends
251(1)
9.8 Sources of further information
252(11)
Acknowledgments
253(1)
References
253(10)
10 In situ X-ray scattering of epitaxial oxide thin films
263(32)
H. Zhou
D.D. Fong
10.1 X-ray toolkits for probing surface/interface: an expanding list
263(9)
10.2 Watching surface/interface evolution for epitaxial oxide synthesis
272(5)
10.3 Interrogating emergent properties at oxide interfaces
277(6)
10.4 Probing functional epitaxial oxide heterostructures for energy harvesting
283(5)
10.5 Future perspectives
288(7)
Acknowledgments
289(1)
References
289(6)
11 Scanning probe microscopy (SPM) of epitaxial oxide thin films
295(34)
H. Guo
J. Zhang
11.1 Introduction
295(1)
11.2 Basic principles of scanning probe microscopy
295(6)
11.3 Scanning probe microscopy studies of "colossal" magnetoresistive (CMR) manganite thin films
301(11)
11.4 Scanning probe microscopy study of ferroelectric and multiferroic thin films
312(8)
11.5 Cross-sectional scanning tunneling microscopy, spectroscopy, and electrochemical strain microscopy
320(1)
11.6 Projective views on microscopic characterization of epitaxial oxide films
321(8)
References
321(8)
Part Three Applications of complex metal oxides
329(150)
12 Optoelectronics: optical properties and electronic structures of complex metal oxides
331(34)
W.S. Choi
S.S.A. Seo
H.N. Lee
12.1 Introduction
331(1)
12.2 Introduction to optical spectroscopy
331(5)
12.3 Optical spectroscopic studies on oxide thin films and heterostructures
336(21)
12.4 In situ optical spectroscopic characterization
357(4)
12.5 Summary and outlook
361(4)
References
361(4)
13 Spintronics: an application of complex metal oxides
365(32)
M. Bowen
13.1 Introduction: present stakes for spintronics
365(1)
13.2 Magnetic interactions in complex metal oxides
366(2)
13.3 Spintronic techniques
368(6)
13.4 Complex oxide electrodes for spintronics
374(7)
13.5 Spacers with intrinsic functionality
381(5)
13.6 Conclusions and perspectives
386(11)
Acknowledgments
388(1)
References
388(9)
14 Thermoelectric oxides
397(46)
P. Brinks
M. Huijben
14.1 Introduction to thermoelectrics
397(1)
14.2 Thermoelectric figure of merit
398(3)
14.3 Promising thermoelectric materials
401(6)
14.4 Thermoelectric confinement in thin films
407(10)
14.5 Epitaxial thermoelectric cobaltate heterostructures
417(14)
14.6 Conclusions and outlook
431(12)
References
434(9)
15 Solid-oxide fuel cells
443(36)
V. Esposito
I. Garbayo
S. Linderoth
N. Pryds
15.1 Introduction
443(5)
15.2 Thin films as solid-oxide fuel cell (SOFC) components
448(13)
15.3 Cell designs
461(5)
15.4 Cell performance: status and perspectives
466(13)
References
468(11)
Index 479
Gertjan Koster is a Professor at the University of Twente in the Netherlands. He is also a visiting professor at the Joseph Stephan Institute in Slovenia. His current research focuses on the growth and study of artificial materials, the physics of reduced scale (nanoscale) materials, metalinsulator transitions, and in situ spectroscopic characterization. Mark Huijben is a Professor at the University of Twente in the Netherlands. He is also a Guest Scientist of the IEK-1 Electrochemical Storage Department at Forschungszentrum Jülich in Germany. His research currently focuses on nanostructured thin films for advanced energy conversion and storage. Guus Rijnders is a Professor and Chairman of Inorganic Materials Science, University of Twente, Enschede, Netherlands. His research currently focuses on the integration of functional and smart materials with electronic and microelectromechanical systems (MEMS).