Muutke küpsiste eelistusi

E-raamat: Packaging of High Power Semiconductor Lasers

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces high power semiconductor laser packaging design, examining new technologies and current applications. It details challenges as well as various packaging and testing techniques.

This book introduces high power semiconductor laser packaging design. The challenges of the design and various packaging and testing techniques are detailed by the authors. New technologies and current applications are described in detail.
1 Introduction of High Power Semiconductor Lasers 1(28)
1.1 The Fundamental Principle of Semiconductor Lasers
1(4)
1.1.1 Energy Band Theory
1(2)
1.1.2 Principle of Semiconductor Lasers
3(2)
1.2 Device Structure
5(6)
1.2.1 Gain Medium Structures
5(3)
1.2.2 Physical Structure
8(3)
1.3 High Power Designs and Considerations
11(7)
1.3.1 Broad Emitting Area
13(1)
1.3.2 Long Cavity
13(1)
1.3.3 Broadened Waveguide Design
14(1)
1.3.4 Fill Factor
15(1)
1.3.5 Facet Passivation
15(1)
1.3.6 Tapered Lateral Structure
16(2)
1.4 Basic Characteristics and Parameters
18(8)
1.4.1 Wavelength
18(1)
1.4.2 Output Power
19(3)
1.4.3 Slope Efficiency
22(1)
1.4.4 Threshold Current
22(1)
1.4.5 Spectrum
22(1)
1.4.6 Near Field
23(1)
1.4.7 Far Field
24(1)
1.4.8 Beam Quality
25(1)
1.4.9 Life Time
26(1)
References
26(3)
2 Overview of High Power Semiconductor Laser Packages 29(24)
2.1 Open Packages
29(17)
2.1.1 Packaging Structure of Single Emitter Semiconductor Lasers
29(5)
2.1.2 Packaging Structure of Multi-emitter Semiconductor Lasers
34(1)
2.1.3 Packaging Structure of Single Bar Semiconductor Lasers
35(5)
2.1.4 Packaging Structure of Multi-bar Semiconductor Lasers
40(6)
2.2 Fiber-Coupled Packages
46(5)
2.2.1 Packaging Structure of Single Emitter Modules
46(1)
2.2.2 Packaging Structure of Multi-emitter Modules
46(1)
2.2.3 Packaging Structure of Single Bar Modules
47(2)
2.2.4 Packaging Structure of Multi-bar Modules
49(2)
References
51(2)
3 Thermal Design and Management in High Power Semiconductor Laser Packaging 53(36)
3.1 Temperature Effect on Performances of High Power Semiconductor Lasers
53(5)
3.1.1 Threshold
54(1)
3.1.2 Slope Efficiency
55(1)
3.1.3 Output Power
55(2)
3.1.4 Wavelength
57(1)
3.1.5 Lifetime
57(1)
3.2 Heat Generation Sources
58(4)
3.2.1 Heat Sources of Single Emitter Semiconductor Lasers
58(4)
3.2.2 Heat Sources of Semiconductor Laser Bars
62(1)
3.3 Thermal Modeling, Design and Analysis
62(20)
3.3.1 Finite Element Thermal Modeling and Design
62(3)
3.3.2 Thermal Design and Analysis of Single Emitter Semiconductor Lasers
65(4)
3.3.3 Thermal Design and Analysis of Conduction-Cooled Semiconductor Laser Bars
69(13)
3.4 Thermal Management Techniques
82(5)
3.4.1 Double-Sided Cooling
82(2)
3.4.2 Macro-channel Cooling
84(2)
3.4.3 Advanced Packaging Materials
86(1)
References
87(2)
4 Thermal Stress in High Power Semiconductor Lasers 89(18)
4.1 Effects of Thermal Stress on Performances of High Power Semiconductor Lasers
89(5)
4.1.1 Wavelength
91(1)
4.1.2 Polarization
92(1)
4.1.3 Smile
93(1)
4.1.4 Cracking
93(1)
4.2 Analysis of Thermal Stress in High Power Semiconductor Lasers
94(3)
4.3 Thermal Stress Minimization
97(8)
4.3.1 Bonding Material
97(2)
4.3.2 Mounting Substrate
99(2)
4.3.3 Advanced Composite Materials
101(4)
References
105(2)
5 Optical Design and Beam Shaping in High Power Semiconductor Lasers 107(48)
5.1 Optical Characteristics of Semiconductor Lasers
107(8)
5.1.1 Single Emitters
109(1)
5.1.2 Diode Laser Bars
110(1)
5.1.3 Diode Laser Stacks
111(4)
5.2 Beam Shaping and Fiber Coupling
115(24)
5.2.1 Single Emitter Semiconductor Lasers
115(2)
5.2.2 Single Bar Semiconductor Lasers
117(16)
5.2.3 Single Vertical Stack Semiconductor Lasers
133(6)
5.3 Beam Combining and Fiber Coupling Techniques
139(13)
5.3.1 Basic Beam Combining Principles
139(2)
5.3.2 Single Emitter-Based Beam Combining and Fiber Coupling
141(2)
5.3.3 Bar-Based Beam Combining and Fiber Coupling
143(5)
5.3.4 Stack-Based Beam Combining and Fiber Coupling
148(4)
References
152(3)
6 Materials in High Power Semiconductor Laser Packaging 155(30)
6.1 Solder Materials
155(17)
6.1.1 Indium Solder
157(3)
6.1.2 AuSn Solder
160(6)
6.1.3 InSn Solder
166(2)
6.1.4 SAC Solder
168(4)
6.2 Mounting Substrates
172(9)
6.2.1 Copper
173(3)
6.2.2 Copper Tungsten
176(1)
6.2.3 Copper Diamond
177(1)
6.2.4 Aluminum Nitride
178(2)
6.2.5 Beryllium Oxide
180(1)
References
181(4)
7 Packaging Process of High Power Semiconductor Lasers 185(42)
7.1 Incoming Material Inspection
186(3)
7.1.1 Main Inspection Items
186(1)
7.1.2 Appearance Inspection
186(1)
7.1.3 Physical Property Measurement
187(2)
7.2 Cleaning
189(5)
7.2.1 Ultrasonic Cleaning
190(1)
7.2.2 Chemical Cleaning
191(1)
7.2.3 Plasma Cleaning
192(2)
7.3 Metallization
194(5)
7.3.1 Electron Beam Evaporation
196(1)
7.3.2 Thermal Evaporation
197(1)
7.3.3 Sputtering Deposition
197(1)
7.3.4 Electroplating
198(1)
7.4 Solder Deposition
199(3)
7.4.1 Indium Solder Deposition
199(2)
7.4.2 AuSn Solder Deposition
201(1)
7.5 Die Bonding
202(6)
7.5.1 PPM Process
204(1)
7.5.2 Reflow Process
205(3)
7.6 Wire Bonding
208(3)
7.6.1 Process
208(2)
7.6.2 Current-Carrying Capability
210(1)
7.6.3 Inspection
210(1)
7.7 Assembling
211(1)
7.8 Screening
212(3)
7.8.1 Appearance Inspection
213(1)
7.8.2 Chip Facet Inspection
213(2)
7.8.3 Electrical Inspection
215(1)
7.9 BBI Test and ABI Test
215(3)
7.9.1 Laser Device Installation
216(1)
7.9.2 Inspection of Electric Short Circuit
217(1)
7.9.3 Diode Laser Cooling
217(1)
7.9.4 Measurement of Laser Device
217(1)
7.10 Burn In
218(2)
7.11 Final Inspection
220(5)
7.11.1 Overall Visual Inspection
221(1)
7.11.2 Chip Facet Inspection
222(2)
7.11.3 Overhang and Underhang Inspection
224(1)
7.11.4 TAP/FAC Inspection
225(1)
References
225(2)
8 Testing and Characterization of High Power Semiconductor Lasers 227(60)
8.1 Light Power-Current-Voltage
227(13)
8.1.1 Output Power
231(2)
8.1.2 Threshold Current
233(4)
8.1.3 Slope Efficiency
237(1)
8.1.4 Electrical-to-Optical Conversion Efficiency
238(1)
8.1.5 Series Resistance
239(1)
8.2 Wavelength and Spectrum
240(7)
8.2.1 Measurement Method and Equipment
241(1)
8.2.2 Wavelength and Spectrum Characterization
241(6)
8.3 Spatial Spectrum
247(8)
8.3.1 Measurement Method and Equipment
248(1)
8.3.2 Typical Testing Results and Data Analysis
249(6)
8.4 Junction Temperature
255(6)
8.4.1 Measurement Method and Equipment
257(3)
8.4.2 Typical Testing Results and Analysis
260(1)
8.5 Thermal Resistance
261(3)
8.5.1 Measurement Method and Equipment
262(1)
8.5.2 Typical Testing Results and Analysis
263(1)
8.6 Near Field
264(4)
8.6.1 Scanning Near-Field Optical Microscope
264(1)
8.6.2 Direct Imaging Method
265(1)
8.6.3 Typical Testing Results and Analysis
266(2)
8.7 Far Field
268(8)
8.7.1 Measurement Method and Equipment
270(3)
8.7.2 Far-Field Testing Data Analysis
273(3)
8.8 Smile
276(3)
8.8.1 Imaging Test Methods
276(2)
8.8.2 Typical Testing Results and Analysis
278(1)
8.9 Burn-in and Lifetime Testing
279(5)
8.9.1 Burn in
279(2)
8.9.2 Lifetime Test
281(3)
References
284(3)
9 Failure Analysis and Reliability Assessment in High Power Semiconductor Laser Packaging 287(28)
9.1 Failure Modes
287(9)
9.1.1 Bulk Failure
288(1)
9.1.2 Facet Failure
288(2)
9.1.3 Solder Joint Failure
290(2)
9.1.4 Micro-channel Cooler Corrosion
292(1)
9.1.5 Performance Instability
292(3)
9.1.6 Optical Feedback
295(1)
9.2 Approaches to Improve Reliability
296(13)
9.2.1 Thermal Management
296(2)
9.2.2 Facet Protection
298(3)
9.2.3 Indium-Free Packaging
301(2)
9.2.4 New Cooler Design
303(2)
9.2.5 Diffusion Barrier Design
305(1)
9.2.6 Thermal Stress Management
306(1)
9.2.7 Approaches to Reduce Optical Feedback
307(2)
9.3 Lifetime Prediction
309(4)
9.3.1 Distribution Functions in Reliability Analysis
309(3)
9.3.2 Life Estimation Method
312(1)
References
313(2)
10 Applications of High Power Semiconductor Lasers 315(50)
10.1 Pumping Applications
315(24)
10.1.1 Pumping for Solid-State Lasers
317(2)
10.1.2 Rod Lasers
319(5)
10.1.3 Slab Lasers
324(3)
10.1.4 Disk Laser
327(3)
10.1.5 Pumping for Fiber Lasers
330(9)
10.2 Material Surface Treatment
339(13)
10.2.1 Characteristics of High Power Semiconductor Laser (HPSL) in Material Surface Treatment
339(3)
10.2.2 The HPSL System and Optical Technology
342(5)
10.2.3 Applications of Direct HPSL in Surface Treatment
347(5)
10.3 Hair Removal
352(9)
10.3.1 The Principle of Laser Hair Removal
352(3)
10.3.2 Semiconductor Laser Hair Removal System and Optical Design
355(3)
10.3.3 Semiconductor Lasers for Hair Removal
358(3)
References
361(4)
11 Development Trend and Challenges in High Power Semiconductor Laser Packaging 365(32)
11.1 Introduction
365(1)
11.2 Output Power Scaling
366(12)
11.2.1 Single Emitter and Bar
367(4)
11.2.2 Multiple Single-Emitter and Bar Modules
371(2)
11.2.3 Horizontal Arrays
373(1)
11.2.4 Vertical Stacks
374(3)
11.2.5 Stack Arrays
377(1)
11.3 High Brightness
378(4)
11.3.1 Chip Design
379(1)
11.3.2 Beam Shaping and Fiber Coupling Technologies
380(2)
11.4 Narrow Spectrum
382(5)
11.4.1 Spectral Control for Laser Bars
382(2)
11.4.2 Spectral Control for Vertical Stacks
384(3)
11.5 Low "Smile"
387(2)
11.6 Indium Free Bonding
389(2)
11.6.1 AuSn Solder
390(1)
11.6.2 Nano-Scale Silver Paste
390(1)
11.7 Application Trend
391(2)
11.7.1 Pumping Applications
391(1)
11.7.2 Material Processing Applications
392(1)
11.7.3 Medical and Cosmetic Applications
392(1)
11.7.4 Price Trend
392(1)
References
393(4)
Index 397
Dr. Xingsheng Liu, Dr. Wei Zhao, Dr. Lingling Xiong, and Dr. Hui Liu are at the Xian Institute of Optics & Precision Mechanics, Chinese Academy of Sciences.